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Foreword 

i H E ACS S Y M P O S I U M S E R I E S was first published in 1974 to 
provide a mechanism for publishing symposia quickly in book 
form. The purpose of this series is to publish comprehensive 
books developed from symposia, which are usually "snapshots 
in time" of the current research being done on a topic, plus 
some review material on the topic. For this reason, it is neces
sary that the papers be published as quickly as possible. 

Before a symposium-based book is put under contract, the 
proposed table of contents is reviewed for appropriateness to 
the topic and for comprehensiveness of the collection. Some 
papers are excluded at th is point, and others are added to 
round out the scope of the volume. In addition, a draft of each 
paper is peer-reviewed prior to final acceptance or rejection. 
This anonymous review process is supervised by the organiz
er^) of the symposium, who become the editor(s) of the book. 
The authors then revise their papers according to the recom
mendations of both the reviewers and the editors, prepare 
camera-ready copy, and submit the final papers to the editors, 
who check that all necessary revisions have been made. 

As a rule, only original research papers and original re
view papers are included in the volumes. Verbatim reproduc
tions of previously published papers are not accepted. 

ACS B O O K S D E P A R T M E N T 
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Preface 

T H E U S E O F D E N S I T Y - F U N C T I O N A L T H E O R Y (DFT) to approach prob
lems of a chemical nature has increased rapidly in recent years. Tradi
tionally, research exploiting this powerful theoretical tool has been 
divided into two main areas: (1) the calculation of electronic structures 
by quantum chemists and solid-state physicists, and (2) the study of phase 
transitions and inhomogeneous fluids by statistical mechanicians. 
Although these two approaches share a common origin and fundamental 
justification in the theorems of Peter Hohenberg, Walter Kohn, and 
David Mermin, they have evolved more or less independently. 

In the calculation of electronic structure, D F T methods are increas
ingly being used by researchers as a standard tool and alternative to tradi
tional ab initio schemes in which the wave function is expanded as a sum 
of Slater determinants. The methodology is now employed by many 
groups, including those historically active in D F T and those previously 
using traditional ab initio methods. D F T methodology is also being used 
as a modeling tool in several industrial companies as well as in academic 
research. Furthermore, much effort has gone into development of the 
methodology itself. 

The use of D F T methods to predict the structure and thermodynam
ics of inhomogeneous fluids and solids near the melting point is not as 
well developed an area as the electronic structure calculations, but it is 
becoming a standard research technique. The method has been successful 
in the study of solid-liquid phase transitions, solid-liquid interfaces, elas
tic constants of crystals near the melting point, and fluids confined in 
pores or capillaries. Although primarily developed for inhomogeneous 
fluids, the method has been used to generate new ways of studying bulk 
fluids themselves. With important exceptions, the systems that are stud
ied are approached classically, in contrast to the inherently quantum elec
tronic structure calculations. 

To our knowledge, the symposium upon which this book is based was 
the first large-scale common forum for the two areas. It involved scien
tists from around the world who are carrying out state-of-the-art research 
in areas of application as well as methodology development. Both indus
try and academia were well represented. 

Through its dual emphasis on basic methodology and applications, it 
is hoped that this book will become a valuable reference for experts in the 
field as well as a useful introduction to the current state of D F T research 
for students and researchers new to the field 

ix 

D
ow

nl
oa

de
d 

by
 2

17
.6

6.
15

2.
32

 o
n 

O
ct

ob
er

 8
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

pr
00

1

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



Acknowledgments 

We gratefully acknowledge the Petroleum Research Fund, PPG Indus
tries, and Biosym, Inc., for their support in the form of travel grants for 
selected participants, as well as the American Chemical Society Divisions 
of Physical Chemistry and Computers for their financial support of the 
symposium. 

B R I A N B. LAIRD 
Department of Chemistry 
University of Kansas 
Lawrence, KS 66045 

RICHARD B. ROSS 
PPG Industries 
P.O. Box 9 
Allison Park, P A 15101 

TOM Z I E G L E R 
Department of Chemistry 
University of Calgary 
2500 University Drive Northwest 
Calgary 
Alberta T2N 1N4 
Canada 

November 16, 1995 

χ 

D
ow

nl
oa

de
d 

by
 2

17
.6

6.
15

2.
32

 o
n 

O
ct

ob
er

 8
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

pr
00

1

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



Chapter 1 

Density-Functional Methods in Chemistry: 
An Overview 

Brian B. Laird1, Richard B. Ross2, and Tom Ziegler3 

1Department of Chemistry, University of Kansas, Lawrence, KS 66045 
2PPG Industries, P.O. Box 9, Allison Park, PA 15101 

3Department of Chemistry, University of Calgary, 
2500 University Drive Northwest, Calgary, Alberta T2N 1N4, Canada 

Density-functional theory (DFT), in its various forms, has become an important 
research tool for chemists, physicists and materials scientists. Its development in 
recent years has proceeded along two (largely independent) paths. The first, and 
unarguably the most well-trodden, concerns the use of DFT in systems of many 
electrons. Such methods have undergone tremendous growth over the last decade 
and are successfully challenging traditional wavefunction-based methods as the 
technique of choice in large-scale quantum chemistry calculations. In a second 
direction, DFT has found much success in constructing theories of inhomogeneous 
fluids and phase transitions, both important sub-fields of statistical mechanics. 
In contrast to the problem of electronic structure, which is inherently quantum 
mechanical in nature, applications in statistical mechanics have been, with a few 
exceptions, classical. 

Although density-functional methods for many-electron systems and their 
classical counterparts used in statistical mechanical studies have evolved more 
or less independently over the years, they, in fact, have very similar structure 
and origins. Modern density-functional theory, for both quantum and classical 
systems, has its fundamental roots in the theorems of Hohenberg and Kohn [1]. 
For an N-particle system interacting with a given interparticle interaction, the 
Hamiltonian and thus the ground-state wavefunction and energy are completely 
determined by specification of the external field φ(r). In other words, the ground 
state energy is a functional of φ(r). In an elegant and simple proof, Hohenberg 
and K o h n , showed in 1964 that there is a one-to-one correspondence between 
external field φ(r) and the single-particle density p(r) and that as consequence it 
is possible to write the total ground-state energy as a functional of p(r), 

Here E0[p] is a functional that is independent of the external potential, <£(r), 
i.e., it is a universal functional for a given interparticle interaction. Hohenberg 

(1) 

0097-6156/96/0629-0001$15.00/0 
© 1996 American Chemical Society 
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2 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

and K o h n also proved a second theorem which provides an energy variational 
principle. They showed that for any tr ia l density p(r) that satisfies / p(r) dr = iV, 

E[p] > Eg , (2) 

where Eg is the true ground-state energy. The equality in equation 2 holds only 
when p(r) is the true ground-state single-particle density. 

If the functional E0[p] were known for a system of interacting electrons, 
then equations 1 and 2 would allow the calculation of the ground-state energy and 
electron density for any multielectron system in an arbitrary external field. The 
H K theorem establishes that such a functional exists, but gives no prescription for 
its determination; therefore, the goal of researchers in this field is the development 
of accurate approximate functionals. 

The Hohenberg-Kohn theorems apply specifically to the ground state en
ergy and therefore apply strictly only at zero absolute temperature. Statistical 
mechanics applications require the extension of these theorems to non-zero tem
perature. This was accomplished by Mermin [2], who showed that for a system 
at fixed temperature, T , chemical potential, μ, and external single-particle po
tential, v(r), there exists a functional ^'[p(r)], independent of v(r) and μ, such 
that the functional 

Ω[ρ(τ)} = T[p{v)\ + j dr[v(r) - μ] (3) 

is a minimum for the the correct equilibrium density p(r) subject to the external 
potential. The value of Ω at this minimum is the grand potential. (For sys
tems restricted to constant density, i.e. canonical ensemble, one minimizes the 
functional Τ itself to give the equilibrium Helmholtz potential.) 

The rest of this overview is organized as follows: In the next two sections 
we wi l l discuss the various approximations and applications of D F T as applied to 
electronic structure and classical statistical mechanics, respectively. In the last 
section, the current state-of-the-art of D F T applications to industrial research 
are reviewed. 

Density-Functional Theory for M a n y Electron Systems 

The basic notion in quantum mechanical density-functional theory of many elec
tron systems is that the energy of an electronic system can be expressed in terms 
of its density. This notion is almost as old as quantum mechanics and dates back 
to the early work by Thomas [3], Fermi [6], Dirac [4], and Wigner [5]. The theory 
by Thomas and Fermi is a true density-functional theory since al l parts of the 
energy, kinetic as well as electrostatic, are expressed in terms of the electron den
sity. The Thomas-Fermi method, although highly approximate, has been applied 
widely in atomic physics as a conceptually useful and computational expedient 
model. 
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1. LAIRD ET AL. An Overview 3 

The Hartree-Fock-Slater or Xa method was one of the first DFT-based 
schemes to be used in studies on electronic systems wi th more than one atom. 
The Xa theory has its origin in solid-state physics. The method emerged from the 
work of J . C . Slater [7] who in 1951 proposed to represent the exchange-correlation 
potential by a function which is proportional to the 1/3 power of the electron 
density. This approximation evolved out of the need to develop techniques that 
were able to handle solids within a reasonable time frame. D F T based methods 
have been predominant in solid-state physics since the pioneering work by Slater 
[7] and Gâspâr [8]. Slater [7] has given a v iv id account of how the Xa method 
evolved during the 1950's and 1960's, with reference to numerous applications up 
to 1974. 

The Thomas-Fermi method as well as the Xa scheme were at the time of 
their inceptions considered as useful models based on the notion that the energy 
of an electronic system can be expressed in terms of its density. As mentioned in 
the introduction, a formal proof of this notion came in 1964 when it was shown 
by Hohenberg and K o h n [1] that the ground-stateenergy of an electronic system 
is uniquely defined by its density, although the exact functional dependence of 
the energy on density remains unknown. This important theorem has later been 
extended by Levy [9]. O f further importance was the derivation by K o h n and 
Sham [10] of a set of one-electron equations from which one in principle could 
obtain the exact electron density and thus the total energy. The work of Hohen
berg, K o h n and Sham has rekindled much interest in methods where the energy 
is expressed in terms of the density. In particular the equations by K o h n and 
Sham have served as a starting point for new approximate D F methods. These 
schemes can now be considered as approximations to a rigorous theory rather 
than just models. 

T h e K o h n - S h a m Equation. The total energy of an η-electron system can 
be written [10] without approximations as 

E*> = ~k Σ / & ( r i ) V 2 & ( r t ) dvx + Σ ι p
 Z A * ι 

1 i J A I "Λ ~ Γ ι I 
ι i Ç M i ï d t i d r 2 + E x c _ ( 4 ) 

2 J I η - r i I 

The first term in equation 4 represents the kinetic energy of η non- interact
ing electrons with the same density p(r\) = £ ? c c φί(τ\)φ{(τι) as the actual system 
of interacting electrons. The second term accounts for the electron- nucleus at
traction and the th ird term for the Coulomb interaction between the two charge 
distributions p(r\) and p(r 2). The last term contains the exchange-correlation 
energy, Εχο· The exchange-correlation energy can be expressed in terms of the 
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4 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

spherically averaged exchange-correlation hole functions [11, 12] PxC(riis) 3 5 

Exc = -ΥΣΣΡΪ^ΙΚΟ(ΓΜ) *X s 2 ds , (5) 
1 7 r 

where the spin indices y and r both run over α-spin as well as /?-spin and s =\ 
ri - r 2 |. 

The one-electron orbitals, of equation 4 are solutions to the set of one-
electron Kohn-Sham equations [10] 

t - ? V i + I R Z \ ι + / ΓΓ^Ί + Vxc]M*i) = hKsMn) = , (6) 2 I Κ Λ - ri I J I r i - r 2 I 

where the exchange-correlation potential VxC is given as the functional derivative 
of Εχο w i th respect to the density [10]: 

The hole function Ρχ0(τχ, s) contains al l information about exchange and 
correlation between the interacting electrons as well as the influence[10] of corre
lation on the kinetic energy. The interpretation of Pxc(riis) IS t n a t a n e l e c t r o n 

at r i to a larger or smaller extent w i l l exclude other electrons from approaching 
within a distances 5. The extent of exclusion or screening increases with the 
magnitude of Ρχσ(τι, s). 

The first generation of D F T based methods took their hole from the ho
mogeneous electron gas. The Hartree-Fock-Slater method (HFS) [13] treats only 
exchange whereas the local density approximation ( L D A ) [14] takes into account 
both exchange and correlation. The H F S and L D A schemes are often referred to 
as the local methods. The second generation of D F T based theories acknowledge 
the fact that the density in molecules is far from homogeneous by introducing cor
rection terms based on the electron density gradients. These theories ( L D A / N L ) 
due to Langreth and Mehl [15], Becke [16] and Perdew [17] are referred to as 
nonlocal. Nonlocal corrections are essential for a quantitative estimate of bond 
energies [18] as well as metal-ligand bond distances [18]. They are also of i m 
portance for other properties[18]. Bo th L D A and L D A / N L suffer from the fact 
that they allow an electron to interact with itself to some degree. A number of 
authors have recently suggested ways in which the "self-interaction" error can 
be eliminated in a computationally efficient way [19, 20]. These new methods 
form the vanguard for the th i rd generation of D F T based schemes. A n account 
of the formal developments in D F T since 1964 and its applications to chemistry 
has been reviewed [18, 21]. Newer developments in the theory are discussed in 
this volume by Baerends, et al. (Chapter 2) and Gross, et al. (Chapter 3). 

Practical Implementations. A practical D F T based calculation is in many 
ways similar to a tradit ional H F treatment in that the final outcome is a set of 
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1. LAIRD ET AL. An Overview 5 

molecular orbitals. These functions are referred to as Kohn-Sham (KS) orbitals 
[10] and are often expanded in terms of a basis set as in the tradit ional Linear 
Combination of Atomic Orbitals ( L C A O ) approach. 

In the earliest implementation of D F T applied to molecular problems, 
Johnson [22] used scattered-plane waves as a basis and the exchange-correlation 
energy was that of the L D A method, see Table 1. This SW-Xa method assumes 
in addition that the Coulomb potential is spherical around each atom; i.e., the 
muffin-tin approximation. This approximation is well suited for solids, for which 
the SW-Xa method originally was developed. However, it is less appropriate in 
molecules where the potential around each atom might be far from spherical. The 
SW-Xa method is computationally expedient compared to standard ab initio 
techniques and has been used with considerable success to elucidate the electronic 
structure in complexes and clusters of transition metals. However, the use of the 
muffin-tin approximation precludes accurate calculations of total energies. A 
more recent method in which scattered plane waves are used without the muffin-
t in approximation is presented by Springborg, et al. in Chapter 8. 

The first implementations of self-consistent D F T , without recourse to the 
muffin-tin approximation, are due to El l i s and Painter [23] ( D V M ) , Baerends, 
et al. [24], ( A D F ) , Sambe, and Felton [25], Dunlap, et al. [26], ( L C G T - L D A ) 
as well as Gunnarson, et al. [27] ( L C M T O ) . A further step forward was taken 
when Ziegler [28], Dunlap [26] and Jones [27] introduced methods that allowed 
total energies to be calculated accurately within the D F T framework. Other 
implementations [29-34] and refinements have also appeared more recently. The 
available D F T program packages, A D F [24], D e M o n [33], D M O L [32], D G A U S S 
[31], G A U S S I A N / D F T [35] and C A D P A C [36] are now nearly as user-friendly as 
their ab initio counterparts, although much work remains to be done. A unique 
approach has lately been taken by Becke [37] in which the KS-orbi ta ls are found 
directly without basis sets. This approach, which seems promising, was first 
applied to diatomic molecules and more recently to polyatomics. 

The use of plane waves as basis functions has received renewed interest in 
connection wi th the recent pioneering work by Carr and Parrinello (CP) [38] . 
These authors have been able to study molecular dynamics from first principles 
by evaluating the required forces "on the go" from D F T calculations. The method 
is best suited for plane wave basis sets. Blôchl [39] has eliminated some of the 
drawbacks of plane waves by introducing projector augmented plane waves ( C P -
P A W ) . The C P - P A W method has great potential in studies of organometallic 
kinetics. Blôchel provides an account of the C P - P A W method in Chapter 4. 

The various SCF-schemes based on D F T are attractive alternatives to 
conventional ab initio methods in studies on large size molecules since the com
putational effort increases as n 3 wi th the number of electrons, n , as opposed to 
between n 4 and n1 for post- H F methods of similar accuracy. The scope of density-
functional based methods has further been enhanced to include pseudo-potentials 
[18], relativistic-effects [18], as well as energy gradients of use in geometry op-
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6 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Table 1: T h e development of D F T as a practical tool in chemical re
search 

Year Comments Reference 
1966 First chemical application of D F T using the [22] 

muffin-tin approximation - UV-spectra and 
photoelectron spectroscopy 

1973-1976 First implementations of D F T without use of the [23]-[25] 
muffin-tin approximation - UV-spectra and 
photoelectron spectroscopy 

1977 The implementation of accurate algorithms for total [26]-[28] 
energy calculations - geometry, bond energies, 
vibrational spectra 

1983-1988 The introduction of non-local density functionals - [15]-[17] 
accurate bond energies and geometries 

1985 The development of first-principles molecular-dynamics 
methods [38, 39] 

1988 Implementation of analytical energy gradients - [18] 
automated geometry optimization 

1989 Force-field calculations based on analytical energy [18] 
gradients - accurate vibrational spectra for large 
molecules 

1990 The determination of transition-state structures [18] 
1990 The Divide and Conquer method of Yang [46] 
1993 Accurate calculations of N M R and E S R parameters [43]-[45] 
1994 Analyt i ca l second derivatives [35]-[42] 

t imization [18] and analytical second derivatives [39-42] with respect to nuclear 
displacements. One of the implementations of analytical second derivatives are 
described by Jacobsen, et al. in Chapter 11. 

Future outlook for Electronic Structure D F T . D F T is now a well es
tablished method after a bumpy and exhilarating path through the 1970's and 
1980's. M a n y of its previous opponents have become lukewarm practitioners or 
even staunch supporters, and it has been implemented into a number of major 
program packages such as A D F , D e M o n , D M O L , D G A U S S , G A U S S I A N / D F T 
and C A D P A C . 

Much st i l l has to be done in terms of improving the existing functionals. 
Applications to excited states have to be explored further [18], and new appl i 
cations to properties such as N M R shifts [44] and E S R [45] hyperfine tensor are 
emerging. Other new developments are the first principles molecular dynamics 
method by Carr and Parrinello [38] which has the potential to introduce temper-
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1. LAIRD ET AL. An Overview 7 

ature into the description of molecular behavior; the divide-and-conquer scheme 
by Yang [46] which allows one to describe large systems; as well as several recent 
inclusions of solvation effects [47] into the D F T formalism. Solvation is discussed 
here by Truong, et ai, (Chapter 6), whereas St -Amant deals w i th the divide-and 
conquer scheme in Chapter 5. Combining D F T with molecular mechanics is the 
subject of Chapter 10 by Merz, et ai A l l of the new methods are bound to 
benefit chemistry to the same degree as the development of D F T over the past 
decade, and it is likely that D F T wi l l become as indispensable a research tool in 
chemistry as any of the major spectroscopic techniques. 
Stephens, et ai, deals with an application of D F T to vibrational spectroscopy in 
Chapter 7. Sosa discuss D F T calculations on the hydrogen bond in Chapter 9. 

Density-Functional Methods in Statistical Mechanics 

A t nonzero temperature, density-functional theory is a procedure for the 
determination of the free energy associated with a given spatially dependent 
single-particle density, p(r). That is, the free energy is determined as a func
tion al of p(r). The equilibrium free energy and microscopic density can then be 
found by minimiz ing this functional for a given external field φ(τ) over the space 
of single-particle densities consistent with the ensemble under study. For readers 
seeking more information than is contained in this brief overview, a detailed de
scription of basic classical D F T and its mathematical justifications is presented 
by Evans [49]. 

Fundamental Theory. The application of density-functional theory to clas
sical statistical mechanics was pioneered by Stillinger and Buff [50] and Liebowitz 
and Perçus [51] and developed into its pres.ent form by Saam and Ebner [52]. The 
universal functional T[p] from Equation 3 can be written as the sum of an ideal 
part, Tid[p], and an excess part, .^[p] , due to the interparticle interactions: 

F[p] = ?id[p] + ?e*[p]. (8) 

In contrast to quantum density functionals, the the exact ideal part of the func
tional for monatomic systems is known explicitly, and is given by 

βΤίά\ρ\ = J oMr){ln[AV(r)] - 1} , (9) 

where Λ is the thermal wavelength and 0 = (kT)~l. (Note that, because of 
bonding constraints, the ideal part of the functional for polyatomic molecules is 
not as straightforward and must be either approximated by a theoretical model or 
calculated v ia computer simulation - see the chapters in this volume by McCoy, 
Yethiraj or Ke i r l ik , et α/., for more information.) The excess part is, in general, 
unknown; therefore, the central task of classical D F theory is to provide a suitable 
approximation for this quantity. 
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8 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

To this end, classical density-functional theories usually begin by defin
ing the η-body direct correlation functions, c ^ ( r i , r n ; [/?]), in terms of the 
functional derivatives of Tex[p\: 

For arbitrary p(r), these correlation functions, like T[p] itself, are unknown, ex
cept in the homogeneous density (liquid) l imi t , where, due to the advances in 
liquid-state theory over the past three decades, they can be determined for η < 2. 
This known information about the homogeneous (p(r) = po) state is then used 
to construct the functional Tex[p]. 

In general, most such approximations fall into two classes: a) methods 
based on functional Taylor-series expansions about some reference state - usually 
the homogeneous phase, and (b) non-perturbative methods based on the concept 
of weighted density functionals. 

The Taylor series approach was outlined by Saam and Ebner [52], In this 
approximation, the free energy of the inhomogeneous phase (here, the crystal) is 
expanded in a functional Taylor expansion about a reference l iquid density po(r). 
This expansion is subsequently truncated at second order to yield 

βΤεχ[ρ) = ^ ( p o W i - l ^ c ^ U i r O W r O - p o i r ! ^ (11) 

- J Jdvxdv2 C i
( 2 ) (| η - r 2 |;p0(r)) 

χ[ρ( Γ ι ) - po(ri)][p(r2) - p0(r2)} + ... . 

Generally, information about is only available for homogeneous liquids, so 
the reference density is usually taken to be constant. 

Initiated by Tarazona [53], weighted-density-functional ( W D F ) methods 
are modifications of the usual Loca l Density Approximation for inhomogeneous 
systems. In the L D A , the free energy density at a point r in a system with 
inhomogeneous single-particle density p(r ) is given by the free energy per particle 
of a homogeneous system, evaluated at the value of the single-particle density at 
point r. However, for very strongly inhomogeneous systems such as a crystal, 
the L D A breaks down. To remedy this, the local density averaged over a small 
region using a weighting function w(\ ri — r 2 \;p) to create a coarse-grained or 
"weighted" density p(v): 

pit,) = Jdv2p{v2) w(\ η - r 2 I; p ( n )) . (12) 

The functional is then assumed to have the same form as the L D A , but with a 
homogeneous free energy evaluated at the weighted density instead of the local 
density. The free-energy functional is then given by 

βΓΜ = fdrfif0(p(r))p(r), (13) 
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1. LAIRD ET AL. An Overview 9 

where /ο (ρ) is the excess Helmholtz free energy of the homogeneous phase. The 
functional is then completely specified by the choice of the weighting function w. 
The task of a successful weighted density-functional theory is to choose a weight
ing function that leads to a good description of the structure and thermodynamics 
of the inhomogeneous phase. For example, in the weighted density approxima
tion ( W D A ) of C u r t i n and Ashcroft [54], the weighting function w(\ r\ - r 2 

is chosen such that both the free energy and the l iquid pair correlation function 
are exactly reproduced in the l imit of a homogeneous density. In this sense, 
the W D F theories are similar to the Taylor series methods in that they both re
quire only the two-particle direct-correlation function of the l iquid phase as input. 

Applications of Classical D F T Perhaps the most common use for classical 
D F T is in the determination of solid-liquid coexistence; i.e. freezing [55-57]. The 
idea of using data from the l iquid phase to determine crystal free energies has its 
origin in the work of K i rkwood and Monroe [58], but modern D F T approaches are 
due to Ramakrishnan and Yousoff [59], whose theory was later reformulated into 
the language of classical density functionals by Hay met and Oxtoby [60]. After a 
functional has been chosen, an equilibrium freezing D F T calculation proceeds as 
follows. F i rs t , the periodic single-particle density of the crystal is parametrized 
so that the minimizat ion of the free-energy functional can be performed. The 
most general parametrization for a given lattice type is the Fourier series 

PW = PL[I + I + E # 4 1 . (14) 
{k} 

where pL is the bulk l iquid density, η is the fractional density change on freez
ing, k represents the set of reciprocal lattice vectors (RLV's ) corresponding to 
the particular lattice type under study, and Ρζ,μ(^) is the Fourier component 
of the density corresponding to the wavevector k. A simpler but less general 
parametrization that is commonly used expresses the density as a sum of Gaus
sian peaks centered at the lattice sites 

ρ « = 0 3 / 2 Σ β χ ρ ( - α Ι Γ - ^ Ι 2 ) . ( 1 5) 

where the are the real space lattice vectors, and a measures the width of 
the Gaussian peaks. For fee systems, the Gaussian parametrization has been 
found to give almost identical freezing results as the more complicated, but more 
general Fourier expansion [61]. After parametrization of the crystal density, the 
free energy (grand or Helmholtz) is minimized in such a way as to ensure the 
thermodynamic conditions of phase coexistence are satisfied, that is, the pressure, 
temperature, and chemical potential of the crystal phase equals that of the l iquid 
phase. The p(r) at the minimum is the equilibrium crystal density. 

Because of the important role that packing considerations play in the solid-
l iquid phase transition and because accurate data is available in analytic form 
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10 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

[62, 63] for the l iquid structure and thermodynamics, the hard-sphere system 
has been the primary benchmark for the evaluation of new D F T approaches to 
freezing (For a complete list of references, see Reference [57]). Al though differing 
in quantitative accuracy, the results from the various methods are qualitatively 
quite similar in that they al l predict coexistence densities that are roughly in 
agreement wi th the simulation results. 

For the above reason, the use of the hard-sphere system as the standard 
to test newly developed theories was, in hindsight, unfortunate as it is only when 
one considers systems with long-range potentials and non-close-packed crystal 
structures that the principal flaws in the density functionals emerge. For example, 
the W D A of C u r t i n and Ashcroft [54] gives very good results for hard-sphere 
systems and systems with purely repulsive interactions that freeze into an fee 
crystal, but the full theory fails when attractive forces are introduced, as in the 
Lennard-Jones system [64] The most accurate theory for hard-sphere freezing, 
the Generalized Effective L iqu id Approximation ( G E L A ) of Lutsko and Baus 
[65] is most extreme in that it gives results for hard spheres that are nearly 
identical wi th simulations, but completely fails for any other system [66, 64]. 
This suggests that the current density-functional theories are doing a relatively 
good job at describing the entropy of a system (hard-sphere freezing is purely 
entropie), but are lacking in their description of the energy. Also , neither the 
second-order functionals nor the standard weighted-density methods have been 
successful at describing the liquid-bec transition in systems such as the repulsive 
inverse-sixth (or fourth) power potential [66, 67]. 

For systems such as L J fluids [68] and Ceo [69] which have attractive 
interactions, there has been some success in in combining D F T methods with 
perturbation theory. In these problems, the attractive part of the potential is i n 
cluded as a perturbation on a hard-sphere reference state. (For a similar approach 
to the phase diagram of colloidal systems see chapter 21 in the present volume 
by Tejero). It is also possible to construct similar perturbative approaches to 
systems wi th long-ranged repulsions [70, 71]. 

Another important area of classical D F T research is in constructing theo
ries for inhomogeneous fluids, i.e., calculating the response of a fluid to an external 
field or confining geometry. It is often difficult to apply lessons from the above 
freezing theories to such systems since it is sometimes the case that methods that 
completely fail for freezing give very good results for inhomogeneous fluids [72]. 
Some of the major areas of research include fluids near a wal l , fluids in pores, 
liquid-vapor interfaces and wetting phenomena. These subjects have a long and 
very interesting history and it would be impossible to do them justice in this 
short overview - for an excellent review of this aspect of D F T see Reference [73]. 
In Chapter 12, Evans uses similar ideas to explore the relationship between the 
decay of correlations in bulk fluids and in fluids near a liquid-vapor interface. 

In a related application, it is also possible to use D F T in construction of 
theories to describe the structure and thermodynamics of solid-l iquid interfaces. 
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1. LAIRD ET AL. An Overview 11 

This application, which can be regarded as a hybrid between D F T freezing meth
ods and those for inhomogeneous fluids, is very important due to the paramount 
role played by the interface in near-equilibrium crystal growth processes [74]. 
There has been much recent success for systems with short-range interactions 
(see Reference [74] and Chapter 15 in this volume by M a r r and Gast) , but be
cause of the intimate relationship between theories of interfacial structure and 
the abil ity of a density-functional theory to reproduce the coexistence proper
ties of a system, theoretical study on crystal-l iquid interfaces is contingent upon 
development of a more generally applicable density-functional approximation. 
Density-functional theory can also be used in a similar way to develop theories of 
nucleation by providing a way to calculate the free energy of a nucleating droplet 
[75]. 

F u t u r e O u t l o o k for D F T i n S t a t i s t i c a l M e c h a n i c s . Perhaps, the sin
gle biggest challenge today in classical density-functional theory is development 
of more generally applicable functional methods, especially ones that work well 
for systems with attractive or long-range interactions. Neither the second-order 
functionals nor the standard weighted-density methods have been successful at 
describing the liquid-bcc transition in systems such as the repulsive inverse-sixth 
(or fourth) power potential [66, 67]. Perturbation theories have potential to this 
end, but more fundamental approaches are probably needed. For an introduc
tion into two approaches of functional development that differ from the standard 
methods presented in this overview see the chapters 13 and 14 in this volume by 
Perçus and Rosenfeld, respectively. 

It would seem that, given the problems encountered in the application 
of classical D F T techniques to simple systems, their application to the complex 
systems of interest to industry such as polymers would futile. O n the contrary, 
the special nature of macromolecular systems makes them ideal candidates. For 
this reason, such applications wi l l be a growth area in classical D F T technology, 
especially considering the enormous technological importance of such materials. 
For further insight into this important topic, please see the following chapters in 
this volume: Chapter 16 by Ke i r l ik , Phan and Rosinberg, Chapter 17 by M c C o y 
and N a t h , Chapter 18 by M c M u l l e n , and Chapter 19 by Yethira j . 

Although most applications of density-functional theory to statistical me
chanics are classical, this is not a necessary restriction. Extension of current 
techniques to quantum systems at finite temperature wi l l be an important area 
of future research. It is here that cross-fertilization from electronic structure D F T 
wi l l have the greatest impact. Chapter 20 by Rick, M c C o y and Haymet explores 
such issues in the context of developing a freezing theory for helium. 

The use of density-functional theory in statistical mechanical applications 
is not as well-developed and mature an area as electronic structure D F T . Con 
sequently, there is much room for improvement, but the successes so far indicate 
that the method has much promise as a general method in statistical mechanics. 
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12 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Industrial Applications of Density-Functional Theory 

Applications of density-functional molecular-orbital theory in an environment 
such as in industrial research laboratories have been increasing. Applications 
of theoretical and computational chemistry in industry have been established in 
pharmaceutical research and more recently in diversified industrial areas such as 
automotive, chemicals, coatings, glass, materials, petroleum, and polymers. 

The theoretical methods commonly used fall into two general categories: 
classical and quantum mechanical. Classical methods, as implemented in molec
ular mechanics and dynamics programs, have been used widely for example in 
the pharmaceutical industry in the study of macromolecules [76]. More recently, 
classical tools have been applied to materials-oriented areas such as polymers 
[77], catalysts [78, 79] and zeolites [78, 80]. 

Whi le useful for many applications, classical methods do not directly ac
count for electronic effects which is required for many additional applied studies. 
To account directly for electronic effects, a molecular-orbital (MO) theory-based 
method (such as density-functional theory) is required. 

There are many examples of applications for M O theory in an applied 
environment. For example, the calculation of bond dissociation energies can aid 
in understanding degradation of polymers and other materials. The calculation 
of proton and electron affinities can aid in understanding relative acidities of 
industrially important compounds. 

Add i t i ona l examples of applications include the characterization of the 
kinetics and thermodynamics of chemical reactions. Resulting quantities such as 
activation energies and heats of reaction can potentially be used to design more 
optimal products with better properties or enhanced processing characteristics. 
For example in a thermodynamically controlled endothermic reaction, heats of 
reaction for a series compounds can be compared to determine which compounds 
wi l l likely result in reactions with the lowest energy requirements. 

Molecular-orbital theory studies can also be employed to predict spectra 
such as for nuclear magnetic resonance and infrared spectroscopy. Prediction of 
spectra can aid in the interpretation of experimental spectra, confirming reaction 
products, and in identifying unknown compounds. 

In addit ion, M O theory can be used to characterize electron distributions 
in compounds. The electron distributions can then be analyzed to identify quan
tities such as relative areas of positive and negative charge. The resulting infor
mation can be interpreted, for example, to aid in the prediction of which regions 
of molecules are more or less prone to nucleophillic or electrophillic attack. 

M O theory methods can also be used to optimize and aid in determin
ing structures for industrially important organometallic compounds in cases for 
which classical force field parameters are not well developed or unavailable. The 
resulting structural information can be used to aid in understanding the mech-
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1. LAIRD ET AL. An Overview 13 

anisms of interaction of organometallic compounds in chemical reactions or in 
more complex composite or mixed systems. 

In addition to single property applications, a combination of M O theory 
tools can be used to characterize important industrial processes. For example, 
electron charge distributions, molecular orbital plots, relevant bond dissociation 
energies and/or proton or electron affinities and other applicable quantities can 
be calculated for a series of compounds used in the same industrial process. The 
calculated results can be then compared to each other as well as to experiment 
to potentially increase understanding of which quantities are most important for 
good experimental performance. 

These examples are small segment of the wide array of applied research 
studies which can be approached with M O theory. For additional discussion of 
quantities potentially useful for applied research see for example the monograph 
Experiments in Computational Organic Chemistry by Hehre, Burke, Shusterman, 
and Pietro [86] as well as chapters that have appeared in Volumes 1-6 of the series 
Reviews in Computational Chemistry edited by Lipkowitz and Boyd [82]. 

M O theory methods used commonly in an applied environment include: 
semiempirical methods [83-85]; Hartree-Fock-based ab initio methods [86]; and 
the subject of this proceedings volume, D F T ab initio methods. 

Semiempirical methods are useful for example for predicting structures of 
organic molecules, heats of reaction for classes of compounds, and trends in U V -
visible absorption spectra produced by substituent changes. These methods are 
the fastest of the three methods typically scaling on the order of n 2 w i th the num
ber of electrons, n. However, parameterization of semiempirical methodologies 
can lead to difficulties if parameters are not available for an element of interest. 
A second difficulty can be the comparison of quantities such as heats of reaction 
if the values differ by small amounts that are on the same order of magnitude as 
errors in the methodology. In addition, while semiempirical methods are appl i 
cable for many studies, some applications require accuracy which is higher than 
that possible from the methodologies. 

Two first-principles alternatives to the semiempirical methodologies are 
the Hartree-Fock (HF)-based and density-functional theory methods. In Hartree-
Fock-based methodology an unparameterized self-consistent field (SCF) calcula
tion is carried out. If electron correlation effects are important, the S C F study is 
followed by systematic post Hartree-Fock treatments [87]. C P U time required for 
HF-based methodology, including post electron correlation treatment, increases 
at between n4 and n7 w i th the number of electrons η as discussed earlier. The ex
tensive C P U requirements for the methodology renders it most useful for studies 
on small molecules and clusters. 

As discussed earlier, density-functional methods have been established for 
many applications, can be of similar accuracy to post -HF treatments, and scale 
as n 3 . In addition, since electron correlation is included in part in the formal
ism, practical application of the methodology is a single-step calculation rather 
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14 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

than the two or more steps required in a post HF-based treatment. In addi 
t ion, commercial packages have been developed to study periodic systems [88] 
which complement those developed and discussed earlier to study non-periodic 
molecular or cluster systems. The comparable accuracy, decreased computational 
requirements, reduced wall clock and researcher interaction time as well as the 
development of commercial periodic packages make D F T methodology an attrac
tive ab init io alternative for the study of large systems as well as for the faster 
study of smaller systems. Largely for these reasons, D F T methods are growing 
in use in applied environments. 

The use of density-functional methods in an applied environment has been 
illustrated by several presentations at this symposium. Presentations were made 
by industrial theoreticians from a diverse array of industries including automotive, 
chemicals, coatings, computers, software, petroleum, and polymers. Appl icat ion 
areas discussed included: copper-substituted zeolite catalysts; iron porphyrn cat
alysts; amide hydrogen bonding and hydrolysis in the context of commercial 
industrial polymers; characterization of polysulfide additives; and characteriza
tion of metal fragments. The last two topics are discussed in detail in chapters 
in this book by Anne Chaka, John Harris and X i a o - P i n g L i and by Rick Ross, 
B i l l K e r n , Shaoping Tang, and A r t Freeman. 

In addition to the presentations by industrial scientists, scientists from 
academia, governmental, and scientific software research laboratories discussed 
the use of D F T methods for many additional applications. The topics of discus
sion included: redox potentials; iron-sulfur clusters in the context of proteins; 
reaction potential energy surfaces and transition states; structures and v ibra
t ional frequencies; surface applications and reactions; enzyme reaction mecha
nisms; chemical reactions on the Si(100)2xl surface; the calculation of N M R 
spectroscopic parameters; prediction of diradical singlet/triplet gaps; compar
ison of methods to predict heats of reaction, geometries, and barrier heights; 
fast density-functional methods; and molecular and materials design. Chapters 
are included in this book on many of these topics including the last five which 
are discussed in contributions by George Schreckenbach, Ross Dickson, Yosadara 
Ruiz-Morales and Tom Ziegler; Myong L i m , Sharon Worthington, Frederic Dulles, 
and Chris Cramer; Jon Baker, M a x M u i r , Jan Andzelm, and Andrew Scheiner; 
John Harris , X i a o - P i n g L i , and Jan Andzelm; and by Er ich Wimmer , respectively. 
The prediction of these properties have potential applications in industrial as well 
as governmental academic and software development laboratories where applied 
research is carried out. 

The wide array of applications discussed in this symposium illustrates the 
motivation for the increasing use of D F T methods in an applied research envi
ronment. As the applicability of D F T methods to predict additional properties 
and as further theoretical improvements occur, the use of the methodology in an 
applied environment wi l l increase at an even faster rate. 
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Chapter 2 

Effective One-Electron Potential in the 
Kohn—Sham Molecular Orbital Theory 

Evert Jan Baerends, Oleg V. Gritsenko, and Robert van Leeuwen 

Afdeling Theoretische Chemie, Vrije Universiteit, De Boelelaan 1083, 
1081 HV, Amsterdam, Netherlands 

Density functional theory has received great interest mostly because of the accu
rate bonding energies and related properties (geometries, force constants) it provides. 
However, the Kohn-Sham molecular orbital method, that is almost exclusively used, 
is more than a convenient tool to generate the required electron density. The effective 
one-electron potential in the Kohn-Sham equations is intimately related to the physics 
of electron correlation. We demonstrate that it is useful to break down the exchange
-correlation part of the potential into a part that is directly related to the total energy 
(the hole potential or screening potential) and a socalled response part that is related 
to "response" of the exchange-correlation hole to density change. The latter part is 
poorly represented by the generalized gradient approximation, explaining why this ap
proximation yields accurate total energies but fails for simple orbital related quantities 
such as the HOMO orbital energy. A simple modelling of the response potential is 
proposed. 
We stress the usefulness of Kohn-Sham orbitals in chemistry, both quantitatively (by 
providing in principle the exact electron density, to be used in density functionals for 
the energy) and qualitatively (for use in qualitative M O theory). 

Although density-functional methods have been around for some time, such as the 
Thomas-Fermi method and the Xα method, a rigorous foundation has only been given 
with the formulation of the Hohenberg-Kolm theorems [1]. In the second place, the 
Kohn-Sham one-electron model [2] has endowed density functional theory with a very 
expedient and at the same time very successful method for practical applications. The 
use of both the old and the new density functional methods has been stimulated by their 
providing relatively high accuracy for relatively low cost. In particular the so-called 
generalized gradient approximations (GGA) [3, 4, 5] are clearly a major step forward 
(much more so in fact than adding electron gas correlation effects in the local-density 

0097-6156/96/0629-0020$15.75/0 
© 1996 American Chemical Society 
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2. BAERENDS ET AL. One-Electron Potential in Kohn-Sham MO Theory 21 

approximation (LDA) to the exchange-only L D A or Χα method). In chemistry, appli
cations almost invariably use the Kohn-Sham molecular orbital model. The exchange-
correlation functional Εχο[p], which is defined in the context of the Kohn-Sham model, 
has been the primary focus of theoretical work directed towards the immediate goal 
of obtaining highly accurate energies from Kohn-Sham calculations. In this line of re
search, the Kohn-Sham one-electron model has been viewed primarily as a convenient 
method to generate accurate electron densities, which can be used in some approximate 
Exc[p] to obtain the total energy. The theoretical status of the Kohn-Sham model has 
received comparatively little attention, as may be evident from the frequently voiced 
opinion that the Kohn-Sham orbitals are just a means to generate electron densities 
but do not have any physical meaning themselves. However, this is a far too restricted 
view on the Kohn-Sham model. As we will demonstrate, the effective potential of the 
Kohn-Sham model has an intimate connection with the physics of the exchange and 
correlation effects in atoms and molecules. The Kohn-Sham orbitals thus represent 
electrons that move in a potential that is certainly as realistic as the Hartree-Fock 
"potential" and indeed has some advantages. There is no reason to believe that the 
Kohn-Sham orbitals are any less "physical" or useful than the Hartree-Fock orbitals 
and they may and have indeed been used quite succesfully in qualitative M O explana
tions that are so typical for present-day chemistry. 

The physics embodied in the effective one-electron potential of the Kohn-Sham 
model leads to certain requirements that have to be fulfilled by these potentials. Well-
known ones are the — 1/r behaviour for r —> oo and the finiteness at the nucleus. 
Other properties, such as certain invariance properties [6], special behaviour at atomic 
shell boundaries [7, 8, 9] and at the bond midpoint [10, 11] have also been identified. 
It is a rather stringent test for approximations to the exchange-correlation energy 
Exc[p], that the exchange-correlation potential νχο that may be derived from it by 
functional differentiation, obeys these requirements. However, in order to obtain a 
complete assessment of the quality of trial Εχα[p] and their functional derivatives, it 
would be necessary to obtain the exact vxc at all points in space. Several procedures 
have been published [12, 6, 13] to generate the Kohn-Sham potential that belongs to a 
given density, in the sense that the occupied eigenfunctions of that potential produce 
the given density. Application of the Hohenberg-Kohn theorem to the Kohn-Sham 
system of non-interacting electrons proves that the Kohn-Sham potential so obtained is 
unique. A detailed study of the potentials derived from the current G G A ' s for Εχο[p] 
shows that, even if these G G A ' s are quite succesful for the energy, their potentials 
exhibit important deficiencies. This knowledge may be helpful when devising improved 
functionals for the energy. 

One may also wonder if it is possible and useful to model Kohn-Sham potentials 
as density functionals directly. Since Kohn-Sham potentials can now be obtained for 
a variety of systems (the first applications to molecules are just appearing [14]), there 
will be more complete data to judge proposals for model potentials than there is for 
functionals for the energy. The latter are usually judged only by their performance 
for the energy, which is an integral over all space of the energy density, in which local 
deficiencies may have cancelled. Locally different energy densities may lead to (almost) 
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22 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

identical energies, and given their non-uniqueness it is hard to judge different proposals 
for energy densities. The Kohn-Sham potential on the other hand is a unique, local 
function of r . 
These considerations naturally lead to the question: is it possible to determine the 
energy of a system, given its Kohn-Sham potential? This is indeed the case, when one 
is prepared to perform a line-integral in the space of densities on which Exc[p] and 
uxcW are defined [15]. This, however, requires knowledge of the K S potential for all 
p's along the line. It is maybe more practical to study and model Exc[p] and υχο[p] 
simultaneously, since it is possible to identify a part of the Kohn-Sham potential that 
can serve as energy density and thus leads directly to the energy, and a part that serves 
to add features to the potential that are required to generate the exact density, but 
that do not enter the energy calculation. 

It is the purpose of this contribution to summarize our present understanding of the 
Kohn-Sham potentials. The paper is structured as follows. In section 2 we introduce a 
method to calculate exact KS potentials from exact (in practice, highly accurate) elec
tron densities. A comparison is made between such accurate potentials and the G G A 
potentials, highlighting important deficiencies of the G G A potentials. In section 3 the 
K S potential is analyzed and in particular its relationship established with traditional 
concepts in the theory of electron correlation such as density matrices and Fermi and 
Coulomb correlation holes [16]. In the last section we specialize to the exchange-only 
case and discuss the breaking up of the KS potential into a screening part, directly 
related to the potential of the exchange hole charge density, and a response part, re
lated to the "response" of the hole to density change. Characteristic features of these 
components of the potential are used to model them accurately. 

2 Exact and G G A potentials in atoms 
We will use the procedure outlined in ref. [6] to generate Kohn-Sham potentials from a 
given density. The given density is the best available density, usually from an extensive 
configuration interaction calculation. 

If we multiply the Kohn-Sham equations 

( - ^ V 2 + ».(f))*i(fO = iiA-(r-) (1) 

from which the density is obtained as: 

X > ( r - ) | a = p(r-) (2) 
t 

(N is the number of electrons in the system), by φ* and sum over i , we obtain after 
dividing by p: 

Μ*1 = Σ \φ"^2Φί(τ) + U\m? (3) 

We now define an iterative scheme using this equation. We want to calculate the 
potential corresponding to the density p. Suppose that at some stage in the iteration 
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we have calculated orbitals φ° with eigenvalues £? and density p° and potential v°. In 
the next step we define the new potential: 

• Ή = ^ Σ i * r ( r > v ! * i ( f ) + <fl*?(f)l ! 

- t f f i w (4, 

Using this potential we calculate new orbitals and a new density and define in the same 
way a new potential. This procedure is continued until the density calculated from the 
orbitals is the same as the given density. In practice until: 

m a x | l - ^ Ç | < 6 (5) 

with € a given threshold. In practice, several precautions have to be taken to ensure 
proper convergence. For instance, one should take care to keep the prefactor in the 
last term of equation 4 in each iteration within an acceptable range: 

1 - δ < ^ · < 1 + δ (6) 

for example with δ = 0.05. It may also be expedient to split off the external potential 
v(f) (in our case always the nuclear attraction) and apply the "update procedure" only 
to the electronic part of the potential, i.e. the Hartree potential and the exchange-
correlation potential: 

vs = v{r) + vel(r) (7) 

where 
vei(?) = [ -^rdfi + vxctf (8) J \r- ri 

and ν is the external potential, in our case the nuclear potential. The scheme is 
not guaranteed to converge as there are densities which are not non-interacting υ-
representable. However if the density is non-interacting υ-representable and if the 
procedure converges then its limit is unique as guaranteed by the Hohenberg-Kohn 
theorem applied to a non-interacting electron system [1], 
We show in fig. l a the exchange-correlation potential obtained in this way from the 
accurate density for Ne obtained by Bunge and Esquivel [17] using configuration in
teraction calculations in a large Slater type basis set. Comparison is made to a G G A 
potential, obtained by functional differentiation of an exchange-correlation energy with 
Becke's [5] gradient corrections to the electron gas exchange energy density and 
Perdew's [3] gradient correction to the correlation energy density. The electron gas 
(LDA) energy densities have been used in the Vosko-Wilk-Nusair parametrization [18]. 
The picture demonstrates that the G G A potential is deficient both asymptotically (it 
decays more rapidly for r —> oo than the required Coumbic long range — 1/r) and close 
to the nucleus, where it exhibits an erroneous though weak Coulombic {-k/r, k « 0.02) 
singularity [6]. One may observe that the L D A potential does not differ much from 
the G G A potential for medium and large r (it also is not correct asymptotically), and 
at the nucleus the L D A potential is actually in better agreement with the exact vxci 

having similar slope and being only slightly too little attractive. 
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Ο-ι 
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Figure 1. Exchange-correlation p o t e n t i a l s f o r the neon atom: 
a) t o t a l p o t e n t i a l s and b) non-local components of the 
p o t e n t i a l s . 
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2. BAERENDS ET AL. One-Electron Potential in Kohn-Sham MO Theory 25 

The fact that the Becke-Perdew gradient corrections, which provide quite important 
corrections to the energy density, fail to correct the L D A potential is very clearly visi
ble in fig. l b , where the difference υχο — VLDA is compared to the sum of Becke and 
Perdew correction potentials. Asymptotically there is virtually no correction and in 
the inner region the G G A potential deviates strongly from vxc — VLDA, although it 
does make an attempt to model the peak in vxc at the boundary between Is and 2s 
shells. The model potential introduced in ref. [6] provides good asymptotic behaviour 
but is clearly deficient in the inner region and also in the border region between Is and 

The too rapid decay of the L D A and G G A potentials in the asymptotic region has the 
important consequence that the one-electron energy of the highest occupied orbital is 
not equal to the exact ionisation energy, as it should be [19], but is far too high. The 
error is in fact quite large, in the order of .25 hartree ( 5 - 6 eV), as may be seen in 
table I. It is also clear from this table that the nonlocal or gradient corrections do not 
provide any improvement. We may therefore expect the electron density to be too 
diffuse, which may have consequences for properties that depend on the outer regions 
such as dipole moments and (hyper)polarizabilities and in particular properties related 
their derivatives such as infrared and Raman intensities. 

It is clear from these results that there is no reason to expect that the G G A approx
imation to the KS potential will generate a better density than the L D A . The general 
practice, particularly in solid state calculations, to use the L D A potential during the 
S C F and to apply the G G A only after convergence, in order to calculate the G G A 
functional for the energy with the L D A density, seems to be justified. The deficiency 
of the G G A potential has been also reported for a model of two interacting electrons 
in an external harmonic potential [20], which can be solved analytically for certain 
parameter values. 
We will in the next section break down the KS potential in physically meaningful parts, 
which will allow us to see the relationship with the physics of electron correlation and 
to identify the causes for the discrepancy between the exact and approximate (both 
L D A and G G A ) potentials. 

3 Kohn-Sham potentials and electron correla
tion 

The exact total energy of a system may be written as 

Here Τ is the kinetic energy, V is the potential energy in the external field and Γ 
is the (diagonal part of the) two-electron density matrix. Γ(1,2) is the probability to 
find an electron with coordinates 1 (at position r i with spin s\) and simultaneously 
another electron with coordinates 2 (at position f2 with spin s2). It embodies the 
physics of the correlation phenomenon, which is exhibited clearly by splitting off the 
uncorrelated (independent particle) probability, which is just the product of the one-

2s. 
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26 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Table I.Ionisation energies and electron affinities (ionisation energies of the negative ions) 
from the highest occupied Kohn-Sham orbital energies: H F - the Hartree-Fock approxima
tion, L D A - the local density approximation, B P - a combination of Becke's [5] approximation 
for exchange and Perdew's [3] approximation for correlation, M O D E L - the model potential 
of ref. [6], E X P T - the experimental data 

A T O M H F L D A B P M O D E L E X P T 

H 0.500 0.234 0.280 0.440 0.500 
He 0.918 0.571 0.585 0.851 0.903 
Be 0.309 0.206 0.209 0.321 0.343 
Ne 0.850 0.490 0.496 0.788 0.792 
A r 0.591 0.381 0.380 0.577 0.579 
K r 0.524 0.346 0.344 0.529 0.517 
Xe 0.457 0.310 0.308 0.474 0.446 

ION H F L D A B P M O D E L E X P T 

F - -0.097 -0.099 0.128 0.125 
c r -0.022 -0.023 0.140 0.133 
B r " -0.008 -0.009 0.140 0.124 

r +0.005 +0.004 0.139 0.112 

M O L E C H F L D A B P M O D E L E X P T 

N 2 0.622 0.328 0.322 0.557 0.573 
F 2 - 0.339 0.334 0.607 0.582 
C O 0.551 0.334 0.336 0.529 0.515 D
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2. BAERENDS ET A K One-Electron Potential in Kohn-Sham MO Theory 27 

electron probability densities p(l) and p(2) 

Γ(1,2) = p(1)p(2) + Γχσ(1,2) (10) 

The exchange-correlation part of Γ describes how the probability to find a second 
electron is modified by the presence of the first one. This may be cast in the language 
of an exchange-correlation hole surrounding the electron at 1 by using the definition 
of the conditional probability Γ(1,2)/p(1) to find an electron at 2 when one is known 
to be at 1: 

p°°»d(2\l) = p(2)+rx°^2) (11) 

The probability of the other electrons to be at 2 is the unconditional probability p(2) 
plus the exchange-correlation hole Γχο(1,2)/p(l) that the electron at 1 digs around 
itself in the unconditional density p(2). The electron-electron part of the total energy 
may accordingly be written as 

2 J r 1 2 2 J 

= \Jp(l)Vn«rtre<(l)dl + \JP(l)vh'>'e(l)dl (12) 

= EHartrc+Wxc (13) 

It is customary to write the conditional electron density in terms of the pair-correlation 
factor g(l,2) 

p^"(2\1) = </(l,2)/>(2) = p(2) + T ™ $ 2 ) (") 

so that the hole density may be written as 

pHoUm =
 Γ χ ° ^ 2 ) = (g(l,2) - l)p(2) (15) 

and 

W x c = i j p W j < q m d 2 d l 

p(l)(g(l,2)-i)p(2) dld2 (16) 

The definition of the exchange-correlation part Wxc of the electron-electron in
teraction energy is convenient for the definition of the exchange-correlation energy 
Exc that features in Kohn-Sham theory. When a Kohn-Sham calculation has been 
performed, an alternative way to write the total energy would be 

Ε = Ts\p] + j p(l)v(l)dl £ ^ H l d l d 2 + EXC (17) 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
00

2

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



28 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Since the K S potential is uniquely determined by the density, so are the solutions of 
the one-electron Kohn-Sham equations. Therefore, the kinetic energy of the electrons 
described by Kohn-Sham orbitals is a functional of the density: 

r >W = Σ/<t>*[p]W(-\v2)<l>.[p}(W ( is) 
t 

This follows of course also immediately from the Hohenberg-Kohn theorem, since this 
theorem implies that the wavefunction of a nondegenerate system is a functional of the 
density, and therefore every expectation value is, including that of the kinetic energy. 
The theorem holds for systems with arbitrary electron interaction, therefore also for the 
non-interacting Kohn-Sham system. So the first three terms in the r.h.s. of eq.(17), as 
well as the l.h.s. are defined and this equation therefore defines the socalled exchange-
correlation energy Εχο· We emphasize the well-known fact that Εχο is different from 
the traditional quantum chemical definition of the exchange-correlation energy as the 
sum of the Hartree-Fock exchange energy plus the correlation energy, the latter being 
traditionally defined as the difference between the exact and Hartree-Fock energies. If 
we compare the equations (17) and (9) for the exact total energy, it is clear that 

Exc[p] = T[p] -Ts[p] + Wxc 
= Txc + Wxc (19) 

where we have used the fact that also the exact kinetic energy (T) is a functional of p, 
and have written the difference between the exact kinetic energy and the K S kinetic 
energy as the exchange-correlation contribution to Τ (also often simply referred to as 
the correlation part of the kinetic energy, T c ) . It is to be noted that the Kohn-Sham 
exchange-correlation energy consists of a kinetic part and a pure exchange-correlation 
part of the electron-electron interaction energy. In contrast, the traditional definition 
E%F + Ecorr contains - sometimes sizable - corrections to the electron-nuclear and 
Hartree energies due to the difference A p between exact and Hartree-Fock densities: 

Δρ(1) = P(1)-PHF(1) 
fpHF , rp _ T?HF , j? rpHF &X Τ &corr — &X -T EJ — EL 

= T[p) - THF 

+ J Ap(l)v(l)dl 

Μ 1 ) Ρ ( 2 ) Λ Λ , 1 [ Δ ρ ( 1 ) Δ ρ ( 2 ) ^ 
r\2 

+WXC (20) 

The Kohn-Sham definition has the advantage that it only consists of the exchange-
correlation corrections to the kinetic energy (T[p]-Ts) and electron-electron interaction 
energy (Wxc) and is not "cluttered" by other terms. These other terms such as the 
correlation correction to the electron-nuclear energy and the corrections to the Hartree 
energy are often quite large, see table 5.1 in ref. [16]. For instance, for the N2 molecule, 
the correlation correction / Δpvdv to the electron-nuclear energy is -13.8 eV, to be 
compared to the total correlation energy of -11.1 eV and -11.0 eV for the correlation 
correction to the electron-electron interaction energy. The traditional definition has 
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2. BAERENDS ET AL. One-Electron Potential in Kohn-Sham MO Theory 29 

of course the operational advantage that the reference Hartree-Fock energy does not 
contain unknowns and can be calculated to virtually arbitrary accuracy. This evidently 
is not the case for the Kohn-Sham system, Exc and its functional derivative vxc being 
only known approximately. Obtaining them exactly is equivalent to a full solution of 
the many-electron problem. 

We are now in a position to consider the physical interpretation of the Kohn-Sham 
potential vxc(r) = SExc/Sp(f). It is possible to take the above equation(19) as a 
starting point, but it is also possible to incorporate the kinetic energy part in an 
expression that formally is similar to eq.(16), but in which the pair-correlation factor 
has been redefined by the so-called coupling-constant integration [21, 22, 23, 24]. The 
coupling constant integrated hole is described by the "average" pair correlation factor 
(7(1,2), in terms of which Exc may be written as 

= 1 M l ) ( f t l , 2 ) - l ) , ( 2 ) ^ 
2 J i-i2 

= I JP(l)Vscr(l)dl (21) 

The screening (or the hole) potential vscr is now due to an average exchange-correlation 
hole. It is referred to as the screening potential [7], since the exchange-correlation ef
fects embodied in g may be considered as screening effects on the full electron-electron 
interaction Ι / Γ 1 2 . The considerations concerning exchange-correlation holes, on which 
present day approximations for Εχα are based, use almost always the coupling con
stant integrated form, either implicitly (e.g. by referring to electron gas calculations of 
exchange-correlation that employ g) or explicitly (cf. the explicit introduction of the 
λ = 0 limit ("exact exchange") by Becke [26]). We will use both expressions. 

The Kohn-Sham potential 

Vs(r) = V(r) + VHartree(r) + Vxc (22) 

is related to Exc since 
àExc / O Q x Vxc = -Τ-ΓΖΓ (23) 8p{r) 

Using eq.(21) we may write vxc as 

where 
« ^ ( 3 ) = \ Jp(l)^^p(2)dld2 (25) 

Eq. 24 demonstrates the physical nature of the components of vxc and therefore of 
the Kohn-Sham potential: the most important part of vxc is just the potential due to 
the averaged exchange-correlation hole. It is interesting to note that this part of vxc 
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30 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

is directly related to the exchange-correlation energy according to equation (21). In 
other words, the X C energy density is just onehalf times the screening potential: 

EXC = / P(r)€ x c(r)rfr = ± J p(f)vscr(f)df (26) 

This relation between the exchange-correlation energy and the screening potential part 
of vxc may be exploited when modelling exchange-correlation functionals for the energy 
and potential simultaneously. Of course vxc also contains an additional term, which 
we have called the response part [7]. It is a measure of the sensitivity of the pair-
correlation factor to density variations. These density variations may be understood in 
the following way. If the density changes to p + δρ, also assumed υ-representable, then 
according to the Hohenberg-Kohn theorem this changed density corresponds uniquely 
to an external potential ν + δν. For the system with external potential ν + δν we 
have the corresponding Kohn-Sham system and the coupling-constant integrated pair-
correlation factor g + 6g. So the derivative of g occurring in the response potential may 
be regarded as the response of g to density changes δρ caused by potential changes δυ. 
The response potential does not affect the energy directly, but it does so indirectly since 
it determines, as part of the Kohn-Sham potential, the S C F density in the Kohn-Sham 
calculation. As we will see below (cf. also ref. [7]), the response part of the potential 
has less pronounced features than the hole potential but is certainly required to obtain 
accurate K S orbitals and densities. 

It is of course also possible to use eq.(19) when deriving vxc. It is convenient to use 
for the exact kinetic energy (T) = T[p] and for the kinetic energy of the noninteracting 
electrons Ts[p] the expressions derived in ref. [10]: 

T\p] = Tw + j p{r)vkin(r)dr 

Ta[p] = Tw + j p(r)v9Mn(r)dr (27) 

Here Tw is the Weiszacker kinetic energy for a density p, which is just Ν times the 
kinetic energy of the normalized density amplitude ("density orbital") \/p/N, 

Tw\p] = N J ^ ( - \ v ^ d f (28) 

The kinetic potential υ* ι η can be related to the electron correlation by expressing it 
in terms of the conditional amplitude Φ/^/p or in terms of the derivative of the one-
electron density matrix [10]. Taking the functional derivative of Exc of eq.(19) to 
obtain vxc leads of course to kinetic potentials and their responses: 

E x c = l _ J p ( l ) ( f l ( l ; 2 ) - l M 2 ) ( f 2 d l + j p W { v k i n { 1 ) _ V a k i n { 1 ) ) d l ( 2 9 ) 

fxc = ^ = «W + C l p o n s e + (»«. - ν*Μη) + - (30) 

The kinetic potential plays an important role in the typical molecular left-right corre
lation effect [10]. This particular form of correlation leads to a peak in υ ^ η at the bond 
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2. BAERENDS ET AL. One-Electron Potential in Kohn-Sham MO Theory 31 

midpoint (a ridge around the bond midplane) in molecules. Other features of these po
tentials, such as step structure in vr^ in atoms, are discussed in ref. [7]. In the present 
paper however we will concentrate on atoms, where exchange is the dominating factor 
in the correlation between electron motions. We will for this case restrict ourselves 
to the exchange-only density-functional theory as made operational in the optimized 
potential method [27, 28]. This will enable us to highlight the relative importance 
of the screening and the screening-response parts of the Kohn-Sham potential and to 
discuss the accuracy of the L D A and G G A approximations for these potentials. 

4 Screening and response potentials in exchange-
only density functional theory 
Given an external potential, one may ask for the local potential that generates the or
bitals that minimize the energy of a single-determinantal wavefunction. This problem, 
nowadays often referred to as the exchange-only D F T , has been addressed by Sharp 
and Horton [29] and Talman and Shad wick [27]. The local potential obtained within 
this "optimized potential model" (OPM) is plotted in fig. 2 for C d . 
The correlation hole of the single-determinantal wavefunction is just the Fermi hole 
and the screening part of the effective potential is just the potential due to this hole: 

Xhole,-? . . \ r Γχ(Γ\σ, Γ2σ) 
Ρ \Τ2σ\Γισί) = 6σσ, --— 

P(ri<r) 
Σ & ι ^ ( n ) C ( ^ ) ^ ( r ! ) 0 J g ( r 2 ) 

Ρσ(η) 

vxscra(ri) = / - ! Ldr2 

This potential is often referred to as the Slater potential, since it is has been analyzed 
thoroughly by Slater [31, 32]. The Slater potential vxscra(fi) (VOPM,SCT in the figure) 
does reflect the shell structure, having different slopes within different shells, but it 
exhibits less structure than the full exchange potential, in that the characteristic in* 
tershell maxima of the latter are missing. It has been emphasized that these "bumps" 
are needed to lower the total energy [33]. Interestingly, as shown by the plot of the 
difference νχΡΜ - υγΡΜ = , the maxima originate by the addition of a very sim
ply structured response potential to the Slater potential: v?™1 is flat over the shell 
regions and exhibits steps in going from one shell to the next. (This intriguing step 
structure of v°e

pM is reminiscent of the step structure found for the response part of 
vkin, cf. ref. [7].) 
The origin of the step structure in the screening-response potential is related to special 
properties of the exchange hole. It has been observed by Luken and coworkers [34, 35] 
that the shape of the exchange hole is almost independent of the position fi of the ref
erence electron as long as this position stays within an atomic shell, or, in molecules, 
within the region covered by one localized orbital. The hole density is then very similar 
to just the shell density or the localized orbital density. When the reference position 
crosses a shell boundary the hole undergoes rapid change to the shape that is charac
teristic for the new shell. This can be illustrated by considering the hole density as the 

(31) 

(32) 
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32 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

square of a hole amplitude and expanding the amplitude in the orbitals from which 
the determinantal wavefunction is build. When the reference position is within a cer
tain shell, only the orbitals that belong to that shell acquire significant coefficients, cf. 
ref. [16]. The phenomenon is evident in the plot of the pair correlation factor ga(fi, f2) 
for the O P M determinantal wavefunction of Be in fig. 3 (the hole density is just the 
plotted (g<,(rur2) - 1) times p(r 2 )) . 
The boundary between the Is and 2s shells is at ca. 1 bohr. Note that as long as the 
reference position 1*1 is inside the Is shell, the hole as function of r 2 is approximately 
—p(r2) within the Is region, and negligible outside that region. However, when π is 
in the 2s region, the hole is negligible in the Is region and equal to -p(r2) in the 2s 
region. In order to derive that these properties of the hole lead to the observed step 
structure in the screening-response potential, we have to consider more closely eq.25 
(the bars can be omitted since we are dealing with the exchange only case where the 
averaging process implied by the coupling-constant integration does not occur). Using 
for the pair correlation factor in the exchange-only case the well known expression 

gSa(r2,rz) = 1 , , . , (34) 
Pa\r2)pa(rz) 

it is clear that taking the derivative with respect to pa(r\) requires knowledge of 

àpa(ri) J Svsa(r3) Spa(r{) 3 

The derivative of <fo with respect to the Kohn-Sham potential is known in terms of the 
Kohn-Sham orbitals and one-electron energies: 

^ = 06) 

where G t < 7 is the following Green's function: 

= Σ * i ^ > (37) 
j# €J* €" 

The functional derivative of the Kohn-Sham potential with respect to the density is 
the inverse density response function: 

= χ7Λ?3,ν1) (38) 

It is possible to derive a simple expression for the screening-response potential by ap
plication of an "effective energy denominator" type of approximation for the Green's 
function, as has been done before by Sharp and Horton [29] and Talman and Shad-
wick [27]. We refer to ref. [8] for details of the derivation. The resulting expression for 
the screening-response potential becomes 

» s j ( r - i )= E ' ^ V S T ( 3 9 ) 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
00

2

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



2. BAERENDS ET AL. One-Electron Potential in Kohn-Sham MO Theory 33 

F i g u r e 3. The p a i r - c o r r e l a t i o n f a c t o r as a f u n c t i o n of the 
r a d i a l c oord inates of e l e c t r o n s f o r the b e r y l l i u m atom. 
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where the constant w t < 7 is defined in terms of the expectation value of the local exchange 
potential νχσ over the orbital φ{σ minus a sum over two-electron integrals of exchange 
type: 

™ίσ = (Φΐ\υχ\Φ) ~ Σ(ΦΗσΦίσ\ \Φ%σΦΐη) (40) 
k V™ 

This is precisely the second term (now to be identified with the response part of the 
potential) of the approximate expression that had been obtained earlier by Krieger, 
L i and Iafrate [28] for the local KS potential in the exchange-only case. K L I derived 
their approximation using the same approximation to the Green's function. It has been 
demonstrated by Krieger et al. that their approximation is very accurate, while provid
ing at the same time a computationally more tractable way to calculate the potential 
than the Talman-Shadwick procedure. From the form of the expression 39 we may 
understand its step character, the height of the steps being governed by the constants 
Wia. We note that the summation in eq. 39 does not include the highest occupied 
orbital. The step height in the region of the outermost orbital is zero, the potential 
is therefore short-ranged and does not destroy the — 1/r asymptotic behaviour of the 
hole potential vx3Cr. 
It is a computational disadvantage that still the exchange-type two-electron integrals 
over the K S orbitals have to be calculated to obtain the step heights W{. It is possible 
to simplify the representation of the response part νχ^ζΓ even further by the Ansatz 
that Wi can be written as a function of the orbital energies 6, [14]. The form of the 
function can be chosen such that various requirements are met: 

a) Gauge invariance. Addition of a constant to the eigenvalues €,·, by adding a 
constant to the potential, should not affect the steps. To satisfy this requirement, we 
choose W{ to be a function of the difference (μ - €,·) 

= / ( μ - € , · ) , (41) 

where μ is the Fermi level of a given system, which is equal to the one-electron energy 
of the highest occupied orbital, μ = €yv-

b) Proper scaling. The exchange potential and its components vscr and t £ " p have 
the following scaling property 

Μ[Α>λ];Γ) = λ υ ι ( Μ ; λ Γ ) (42) 

where 
Ρλ{η = λ3ρ(\η (43) 

while €, has the scaling property 

ΦΑ] = λ»φ(Γ-) ] (44) 

To provide (42), the function / from eq. 41 should scale as follows 

/ ( λ ΐ ( μ - ί , - ) ) = λ / (μ -€ , · ) (45) 

and so we find the square root of (μ — 6;) to be the properly scaling function / 

Wi = / ( μ - e,-) = Κ[p]^μ-€{ (46) 
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c) Short range. By definition, (46) satisfies the condition WN = 0. Owing to this, 
the highest occupied orbital does not contribute to the numerator of (39), thus 
providing the short-range behaviour of our proposed model response potential ν™£p 

2 
(47) 

d) Correct electron gas limit. It is desirable that the model response potential be correct 
in the limit of a homogeneous electron gas. Κ [p] in (47) is a numerical coefficient, which 
can be determined from this requirement. For the gas of density p the exact t/J?*£. has 
the form 

re-p = ( 4 8 ) 
"Xscr 27Γ V ' 

where kp is the Fermi wave vector 

kF = (Zn2p)i (49) 

Putting t ^ j j of eq. (47) to be equal to (48), one can calculate Kg[p]. For the homo
geneous electron gas the Kohn-Sham orbitals and eigenvalues are given by 

where V is the volume of the system and 

k2 

H = -2+vx[p] + Vc[p] (51) 

The Fermi level is given by 

2 
Inserting the above expression in (47), we obtain 

KM 

|É|<*F 

μ = ^ + »«Μ + »«Μ ( 5 2 ) 

(53) 

A replacement of the sum in (53) by an integral yields 

rc5pV ' V2(2n)3pJo V F 

= K9\p]#F [l JT^x2dx = ^ l k F (54) 
2Λ/2(2ΤΓ)2/9 JO ' 16>/2 

From (48) and (54) the Kg[p] value is defined by 

KM = K, = | ^ « 0.382 (55) 

which is valid for a homogeneous electron gas of arbitrary density, i.e. in this case 
Kg[p] does not depend on p. 
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It is also possible to determine the constant K[p] during the S C F calculations in a self-
consistent manner. We refer to ref. [14] for details. The self-consistently determined 
values Ksc differ little from the homogeneous electron gas value. 

We now investigate the performance of the G G A potentials in the exchange-only 
case, both for the screening and for the response parts. We use as G G A exchange 
energy density £GGA[p](f) the L D A plus the gradient correction introduced by Becke 
[5] (Becke88). This defines the screening and screening response potentials according 
to the following equations: 

E$GA = J P(?)(GGA[p](?)dr = \ J p(ν)υψ,£(ν)ά? (56) 

and 

« = 2 ^ (57) 

Vx?fGA = J?(nS-^Pdr> - ^ ( r ) . (58) 
Full O P M calculations [27] provide us with a benchmark accurate νχ, the accurate 
screening potential vxacr can be evaluated from the orbitals using the defining equation 
for the Fermi hole potential (or Slater potential) 

J |n - r 2 | 

= m ώ> W 

The response potential is then simply obtained as the difference between the full υ χ 
and the screening part υ$. In fig. 4 we compare the accurate O P M Slater potential, 
calculated with the O P M orbitals, with the G G A approximation vGGA = 2eGGA. Here 
vGGA has been calculated from the self-consistent G G A density but use of the O P M 
density would have given essentially the same curve: the differences in the shapes of 
υΟΡΜ and vGGA are almost completely due the different expressions, eq. 59 resp. eq. 
57. 
It is known that the G G A (Becke88) exchange energies are quite accurate, so vGGA 

times p integrates to the correct number, but the figure shows that also locally the 
G G A energy density is reasonably close to the O P M one. This also holds for heavier 
atoms (cf. Ca , K r , Cd in ref. [36]. There is of course still room for improvement, in 
particular the behaviour close to the nucleus is different and the G G A energy density 
is not deep enough in the Is region. However, the G G A response potentials, which 
are compared in fig. 5, show much more significant deviations from O P M . It is clear 
that vx

es
!£fSGA, denoted as vGGA in the figure, does not have the required short range. 

It is responsible for the wrong asymptotic behaviour of the G G A exchange potential, 
which causes for instance the wrong orbital energies (see above). In the second place 
we note the singular behaviour of νχ^°ΟΑ at the nucleus. It is indeed easily derived 
that the G G A exchange energy density leads to a Coulombic singularity in the response 
potential [6]. Finally, the striking step like behaviour of the response potential, which 
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On 

r(a.u.) 

F i g u r e 5. Response p o t e n t i a l s f o r the neon atom. 
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Table II. Comparison of differences (in mllartrees) of the total energies calculated self-
consistently with the exact functional v$ and various approximations to υ Γ Μ ρ , with the O P M 
total energies E°PM [37] (the latter are given in Hartrees and are always more negative). 

A T O M _EOPM 
VKLI t C 5 ( * . ) neglect of vresp 

Be 14.572 0 0 0 11 
Ne 128.545 0 1 0 44 
M g 199.612 1 2 2 79 
A r 526.812 2 3 4 109 
C a 676.752 2 4 4 146 
Zn 1777.834 4 6 6 258 
K r 2752.043 4 5 5 288 
Sr 3131.533 4 7 7 324 
Cd 5465.114 6 6 6 419 
Xe 7232.121 7 12 11 450 

is clearly visible in vop
p

M, is not represented well by the G G A approximation, although 
it clearly does make an attempt to build the required repulsive shape of the response 
potential. Fig . 5 also shows the response potential as given by the K L I expression, 
eq. 39, and two cases where our model expression has been used. In one case, denoted 

the orbitals have been used from a self-consistent calculation with our v™* 
plus the G G A screening potential vGGA, in the other case, denoted υ™,p^ our model 
response potential has been used in conjunction with the full Slater screening potential 
(eq.59). A l l these potentials are reasonably accurate, giving a somewhat too 
high step. 
In order to show both the importance of the response part of the potential and the 
quality of the K L I approximation as well as our modelling, we give in table II the 
deviation from the total O P M energy when the response part of the potential is omitted 
or when one of the approximations is used. For the screening part in all cases the Slater 
potential has been used. Both the electron gas value for Κ and the self-consistently 
determined Κ have been used in our model response potential. 

The total energy is always determined from the self-consistently obtained orbitals 
in the same way, i.e. using (l/2)t>s as energy density. Therefore, the O P M total 
energy is always the lowest one, since the O P M local potential precisely determines 
the orbitals having this property. Note that the response part of the potential is not 
related directly to the total energy, it only serves to determine the orbitals and the 
density so that the energy becomes minimal. The results in the table show that the 
various model response potentials are doing pretty well. This does not mean that any 
response potential would do. The results obtained by omitting the response part of 
the potential altogether show that this distorts the orbitals and density sufficiently to 
give large deviations in the total energy, in spite of its variational stability. 
It is also interesting to see if the use of appropriate response potentials improves the 
poor G G A results for the highest orbital energy. 

In table III we show the deviations of the €HOMO with respect to the O P M result 
for the same models as used in the previous table. The deviations for the K L I response 
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Table III. Comparison of differences between the O P M values for the highest occupied 
orbital energy e%PAi (in mHartrees) and those calculated self-consistently with the exact 
functional vs and various approximations to vresp 

A T O M reap 
KLI neglect of i v e s p 

Be 309 0 1 6 -17 
Ne 851 2 21 30 -61 
M g 253 1 5 5 -31 
A r 591 2 18 21 -47 
C a 196 1 10 10 -29 
Zn 293 1 -14 -14 -64 
K r 523 1 20 20 -44 
Sr 179 1 12 10 -30 
Cd 265 0 2 1 -65 
Xe 456 1 23 22 -40 

potential are at the mHartree level, our model response potential gives a deviation 
about an order of magnitude larger. This is still an order of magnitude better than 
the pure G G A potential. 

5 Conclusions 
We have investigated in this paper the relationship between the one-electron local ef
fective Kohn-Sham potential of density functional theory and the physics of electron 
correlation as embodied in the behaviour of exchange and correlation holes. It has 
proven useful to break up the exchange-correlation potential in a part that is just the 
potential of the hole charge density (the screening potential) and a part that is related 
to the response of the hole to density changes (the response potential). The first is 
equivalent to the energy density per particle and is therefore directly related to the 
density functional for the energy. The response potential is needed in order to gener
ate accurate densities from the solutions of the KS equations. 

We wish to emphasize that the K S orbitals are not just mathematical constructs, 
without physical meaning, that are only useful for the construction of the density. The 
connection that we have discussed in this paper between the K S potential and the 
physics of electron correlation (described here in terms of Fermi and Coulomb holes), 
implies that the field that is described by the KS potential is no less "physical" than 
is the field of other one-electron models, such as Hartree-Fock. There is therefore no 
reason why one should not use the KS orbitals in qualitative M O considerations, that 
are so useful in rationalizing a large body of chemistry [38, 39]. As a matter of fact, 
there are certain advantages to the use of Kohn-Sham orbitals. They possess some 
properties that are implicitly assumed in perturbative M O considerations. In the first 
place the highest occupied orbital energy is exactly equal to the first ionization energy 
of the molecule. This means that the orbital energy levels are positioned correctly with 
respect to each other for P M O arguments to be used ("orbital control"). In particu
lar, the virtual orbitals of the K S calculations do not exhibit the undesirable upward 
shift that is characteristic of Hartree-Fock. The virtual KS orbitals are solutions in 
exactly the same potential as the occupied orbitals. Since this potential contains a full 
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hole charge potential (see above) it is "self-interaction free", also for the virtual or
bitals. In practice this means that the occupied and virtual orbitals have both realistic 
one-electron energies and spatial extent (no unphysically diffuse virtual orbitals) and 
possess the typical bonding and antibonding characteristics that one expects on the 
basis of elementary M O considerations. Therefore the results of Kohn-Sham calcula
tions, apart from providing the well-known highly accurate results for total energies, 
may be easily interpreted in the familiar qualitative M O language. An additional ad
vantage is the property that the K S orbitals yield the exact density. This is a very 
desirable feature when calculating electrostatic interaction contributions ("charge con
trol"). Semi-quantitative energy decomposition methods, in which the electrostatic 
interaction energy as well as frontier orbital interaction terms play a role, have for 
instance been advocated by Morokuma [40, 41] and others [42, 43, 44]. Since the pio
neering work of Ziegler [45, 46, 47] in the application of energy decomposition methods 
within the framework of Kohn-Sham theory (initially in the context of exchange-only 
L D A or J a ) , numerous applications have appeared, see refs. [48, 49, 50, 51, 52] and 
references therein. 

References 
[1] P. Hohenberg and W. Kohn, Phys. Rev. 136B:864, 1965 
[2] W. Kohn, L.J. Sham, Phys. Rev. 140A:1133, 1965 
[3] J.P. Perdew, Phys. Rev. B33:8822, 1986 
[4] J.P. Perdew and Wang Yue, Phys. Rev. B33:8800, 1986 
[5] A.D. Becke, Phys. Rev. A38:3098, 1988 
[6] R. van Leeuwen and E.J. Baerends, Phys. Rev. A49:2421, 1994 
[7] O. Gritsenko, R. van Leeuwen and E.J. Baerends, J. Chem. Phys. 101:8955, 1994 
[8] R. van Leeuwen, O. Gritsenko and E.J. Baerends, Z. Physik D 33:229, 1995 
[9] O. Gritsenko, R. van Leeuwen, E. van Lenthe and E.J. Baerends, Phys. Rev. 

A51:1944, 1995 
[10] M. A. Buijse, E.J. Baerends and J.G. Snijders, Phys. Rev. A40:4190, 1989 
[11] R. van Leeuwen and E.J. Baerends, Int. J. Quantum Chem. 52:711, 1994 
[12] Wang Yue and R.G. Parr, Phys. Rev. A47:R1591, 1993 
[13] Qingsheng Zhao, R.C. Morrison and R.G. Parr, Phys. Rev. A50:2138, 1994 
[14] O. Gritsenko, R. van Leeuwen and E.J. Baerends, Phys. Rev. A52:1870, 1995 
[15] R. van Leeuwen and E.J. Baerends, Phys. Rev. A51:170, 1995 
[16] M.A. Buijse and E.J. Baerends, in: Density Functional Theory of Molecules, 

Clusters and Solids, ed. D.E. Ellis, , p.1, Kluwer, 1995 
[17] A.V. Bunge and R.O. Esquivel, Phys. Rev. a33:853, 1986 
[18] S.H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58:1200, 1980 
[19] C.O. Almbladh and U. von Barth, Phys. Rev. B31:3231, 1985 
[20] C. Filippi, C.J. Umrigar and M. Taut J. Chem. Phys. 100:1290, 1994 
[21] J. Harris and R.O. Jones, J. Phys. F 4:1170, 1974 
[22] Ο. Gunnarsson and B.I. Lundquist, Phys. Rev. B13:4274, 1976 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
00

2

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



2. BAERENDS ET AL. One-Electron Potential in Kohn-Sham MO Theory 41 

[23] D.C. Langreth and J. P. Perdew, Sol. State Comm. 31:567, 1975 
[24] R.M.Dreizler and E.K.U.Gross, Density Functional Theory: An Approach to the 

Quantum Many-Body Problem, Springer-Verlag, Berlin, 1990. 

[25] B.G.Johnson, P.M.W.Gill, and J.A.Pople. J. Chem. Phys., 98:5612, 1992. 
[26] A.D.Becke. J. Chem. Phys., 96:2155, 1992. 
[27] J.D. Talman and W.F. Shadwick, Phys. Rev. A14:36, 1976 
[28] J. B. Krieger, Y. Li and G. J. Iafrate, Phys. Rev. A45:101, 1992 
[29] R.T. Sharp and G. K. Horton, Phys. Rev. 90:317, 1953 
[30] A.D. Becke, J. Chem. Phys., 97:9173, 1993 
[31] J.C. Slater, Phys. Rev. 81:385, 1951 
[32] J.C. Slater, Quantum Theory of Atomic Structure, Vol. 2, MacGraw-Hill, 1960 
[33] Y. Wang, J.P. Perdew, J.A. Chevary, L.D. Macdonald and S. H. Vosko, Phys. 

Rev. A41:78, 1990 

[34] W.L. Luken and D. N. Beratan, Theoret. Chim. Acta 61:265, 1982 

[35] W.L. Luken, Int. J. Quantum Chem. 22:889, 1982 
[36] O. Gritsenko, R. van Leeuwen and E.J. Baerends, Int. J. Quantum Chem. to be 

published 
[37] Y. Li , J. B. Krieger and G.J. Iafrate, Phys. Rev.A47:165, 1993 
[38] T.A. Albright, J.K. Burdett and M.H. Whangbo, Orbital Interactions in Chem

istry, Wiley, 1985 

[39] A. Rauk, Orbital Interaction Theory of Organic Chemistry, Wiley, 1994 

[40] K. Morokuma, J. Chem. Phys. 55:1236, 1971 

[41] K. Kitaura and K. Morokuma, Int. J. Quantum Chem. 10:325, 1976 

[42] S. Wolfe, D.J. Mitchell and M.H. Whangbo, J. Am. Chem. Soc. 110:1936, 1978 
[43] F. Bernardi, A. Bottoni, A. Mangini and G. Tonachini, J. Molec. Struct. 

(Theochem) 86:163, 1986 
[44] A.J . Stone and R.W. Erskine, J. Am. Chem. Soc. 102:7185, 1980 
[45] T. Ziegler and A. Rauk, Theor. Chim. Acta 46:1, 1977 

[46] T. Ziegler and A. Rauk, Inorg. Chem. 18:1558, 1979 

[47] T. Ziegler and A. Rauk, Inorg. Chem. 18:1755, 1979 
[48] H. Jakobson and T. Ziegler, J. Am. Chem. Soc. 116:3667, 1994 
[49] E.J. Baerends and A. Rozendaal, in: Quantum Chemistry: The Challenge of 

Transition Metal Complexes, p. 159, Reidel, 1986 
[50] A. Rosa and E.J. Baerends, New. J. Chem. 15:815, 1991 

[51] A. Rosa and E.J. Baerends, Inorg. Chem. 33:584, 1993 
[52] F .M. Bickelhaupt, N.N. Nibbering, E.M. van Wezenbeek and E.J. Baerends, J. 

Phys. Chem. 96:4864, 1992 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
00

2

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



Chapter 3 

Conventional Quantum Chemical Correlation 
Energy Versus Density-Functional Correlation 

Energy 

Ε. K. U . Gross, M . Petersilka, and T. Grabo 

Institut für Theoretische Physik, Universität Würzburg, Am Hubland, 
D-97074 Würzburg, Germany 

We examine the difference between the correlation energy as defined 
within the conventional quantum chemistry framework and its na
mesake in density-functional theory. Both correlation energies are 
rigorously defined concepts and satisfy the inequality EQCc ≥ EDFTc. 
We give numerical and analytical arguments suggesting that the 
numerical difference between the two rigorous quantities is small . 
F inal ly , approximate density functional correlation energies resul
t ing from some popular correlation energy functionals are compared 
with the conventional quantum chemistry values. 

In quantum chemistry ( Q C ) , the exact correlation energy is traditionally defi
ned as the difference between the exact total energy and the total selfconsistent 
Hartree-Fock ( H F ) energy: 

W i t h i n the framework of density-functional theory ( D F T ) [1, 2], on the other 
hand, the correlation energy is a functional of the density [p]. The exact 
D F T correlation energy is then obtained by inserting the exact ground-state 
density of the system considered into the functional E^*1- [p], i . e. 

0097-6156/96/0629-0042$15.00/0 
© 1996 American Chemical Society 
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3. GROSS ET AL. Density-Functional Correlation Energy 43 

In practice, of course, neither the quantum chemical correlation energy (1) nor 
the D F T correlation energy (2) are known exactly. Nevertheless, both quantities 
are rigorously defined concepts. 

The a im of the following section is to give a coherent overview of how the cor
relation energy is defined in the D F T literature [3-14] and how this quantity is 
related to the conventional Q C correlation energy. The two exact correlation 
energies E^Xact and E^J^lCt are generally not identical. They satisfy the inequali
ty £c

QeCxact > ^ c
D e x L f Furthermore we wi l l give an analytical argument indicating 

that the difference between the two exact quantities is small . 

In the last section we compare the numerical values of approximate conventional 
Q C correlation energies with approximate D F T correlation energies resulting from 
some popular D F T correlation energy functionals. It turns out that the difference 
between D F T correlation energies and Q C correlation energies is smallest for the 
correlation energy functional of Colle and Sal vet t i [15, 16] further indicating [17] 
that the results obtained with this functional are closest to the exact ones. 

Basic Formalism 

We are concerned with Coulomb systems described by the Hamiltonian 

H = T + WC\h + V 

where (atomic units are used throughout) 

f - | ( - 5 V ? ) 

1 N 1 

V = £>(rj) . 

i=l 
To keep the following derivation as simple as possible, we choose to work with the 
traditional Hohenberg-Kohn [18] formulation rather than the constrained-search 
representation [4, 19, 20] of D F T . In particular, a l l ground-state wavefunctions 
(interacting as well as non-interacting) are assumed to be non-degenerate. B y 
virtue of the Hohenberg-Kohn theorem [18] the ground-state density p uniquely 
determines the external potential ν = ν [p] and the ground-state wave function 
Φ [p]. If v0(r) is a given external potential characterizing a particular physical 
system, the Hohenberg-Kohn total-energy functional is defined as 

Evi[p) = (m\f+Wah + Vo\9\p)) . (7) 
As an immediate consequence of the Rayleigh-Ritz principle, the total-energy 
functional (7) is minimized by the exact ground-state density pexact corresponding 

(3) 

(4) 

(5) 

(6) 
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44 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

to the potential v0, the min imum value being the exact ground-state energy, i . e. 

.exact — EvQ [/>exact] · (8) 

In the context of the Kohn-Sham (KS) scheme [21] the total-energy functional is 
usually written as 

E*t[p] = T.[p] + Jp(r)v0(r)d3r+l-Jf^^d3r^r' + Exc[p] (9) 

where Ts [p] is the kinetic-energy functional of non-interacting particles. B y virtue 
of the Hohenberg-Kohn theorem, applied to non-interacting systems, the density 
p uniquely determines the single-particle potential vs [p] and the ground-state 
Slater-determinant 

$
K S [p] = - ^ d e t { ^ s H } (10) 

and hence Ts [p] is given by 

m = (Φκ*[p]\τ\Φ™[p\) 

= Σ Σ /Ψ™ Μ W ( " ^ V 2 ) φ™ [p] (r) d3r . (11) 

We mention in passing that the Hohenberg-Kohn theorem can also be formulated 
for a "Hartree-Fock world" [22], implying that the H F density uniquely determi
nes the external potential. Consequently the H F ground-state determinant is a 
functional of the density as well: 

Φ™[p] = -±=ά*{ί%[p]} . (12) 

The resulting kinetic-energy functional 

T™[p] = (ΦΗ Ρ[p]|Γ|ΦΗ Γ[p]) 

is different from Ts[p] because the orbitals in (11) come from a local single-particle 
potential vs[p] while the orbitals in (13) come from the nonlocal H F potential 
vH F[/?]. However, the numerical difference between THF[/9] and T8[p] has been 
found to be rather small [14]. 

The remaining term, Exc [/?], on the right hand side of equation (9) is termed the 
exchange-correlation (xc) energy. Comparison of equation (9) with equation (7) 
shows that the xc-energy functional is formally given by 

EM = (nP)\f + Wab\m-TM-\jJ^}Z^<i3r<fr' . (14) 
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3. GROSS ET AL. Density-Functional Correlation Energy 45 

In density-functional theory the exact exchange-energy functional is defined by 

^ ^ ^ ( Φ ^ Η Ι ^ Ι Φ ^ Η } - ^ / / ^ ^ ^ ^ . ( i s ) 

This is identical with the ordinary Fock functional 

s ^ v ] = - \ ς ς i l * * ' de) 
<r=î,!j,A:=l I I 

evaluated, however, with the K S Orbitals , i . e. 

Ε™Ιρ} = Ε™[φ™[p}\ . (17) 

The D F T correlation-energy functional is then given by 

E?™[p) = Exc{p)-E™[P] . (18) 

Inserting the respective definitions (14) and (17) of Exc[p] and Ex
FT[p] we find 

= mp]\f + WCihWp])-np}-\jJPj^d*r<Pr'-E™ [pff[p]} . 

(19) 
In terms of the Hartree-Fock total-energy functional 

E™ = Σ Σ / V>*(r)* ( - \ V 2 ) φίσ(ν) d*r + / p(r) M r ) <Pr 

4//^^^^ + ̂ ]̂ (20) 
and the total-energy functional (7) the D F T correlation energy (19) is readily 
expressed as 

Ε?ί?τ[p} = ΕυΒ[p}-Ε™[φ™Ιρ}} • (21) 
B y equation (2), the exact D F T correlation energy is then obtained by inserting 
the exact ground-state density pexact (corresponding to the external potential vo) 
into the functional (21). B y virtue of equation (8) one obtains 

£?exLt = ^tot.exact ~ E^f [ffa [pexact]] · (22) 

The conventional quantum chemical correlation energy, on the other hand, is 
given by 

£cQeC*act = i W a c t ~ ^ [ < f ê [PHF]] (23) 

where ( /̂[/JHF] are the usual self consistent H F orbitals corresponding to the 
external potential t; 0 , i . e. pup is that very H F density which uniquely corresponds 
to the external potential v0. Of course, /É>HF a n ^ Pexact are generally not identical. 
Comparison of (22) with (23) shows that 

E % L = E ^ + « F [*ET M - Β™ [*g?l*-]]) · (24) 
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46 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

This is the central equation relating the D F T correlation energy to the Q C cor
relation energy. Since the H F orbitals [/>HF] a r e the ones that minimize the 
H F total-energy functional (20) , the inequality 

<ρΚ;Μ<<p[^[^ι] (25) 
must be satisfied and it follows from equation (24) that 

(26) 

This was first recognized by Sahni and Levy [3]. Equation (24) tells us that, as a 
matter of principle, selfconsistent D F T results for the correlation energy should 
not be compared directly with the conventional quantum chemical correlation 
energy but rather with the right-hand side of equation (24). In practice, of course, 
quantum-chemical correlation energies and ground-state densities are known only 
approximately, e. g. , from configuration-interaction (CI) calculations. Hence, 

i W i - £ » H o U ^ S M (27) 

is the quantity the selfconsistent D F T correlation energy should in principle be 
compared with. The second term of (27) is readily computed by employing one 
of the standard techniques [13, 23 , 24 , 25] of calculating the K S potential and its 
orbitals from a given C I density. In the following we shall argue, however, that 
the difference between E^^ci and E^lcact can be expected to be small . To see 
this we rewrite equation (24) as 

E%L-B«L* = K M ^ F M - £ " F [ ^ S [ ^ - o n i y ] ] ) 

+ K F kV-om y ] ] - < F ( ^ W t l j ) · (28) 

where p x _ 0 n i y is the ground-state density of an exact exchange-only D F T cal
culation [26, 27] and </?* s[/> x- 0ni y] are the corresponding K S orbitals. The first 
difference on the right-hand side of equation (28) is known to be small [26, 27]. 
The second difference, on the other hand, is easily seen to be of second order in 
(Px-only — Pexact) and is therefore expected to be small as well: 

M r ) 
' (Px-only(r) - /9exact(r)) + 0 ( /3 x -only ~ Pexact) 

Px-only 

= Jd3rp- (/9 x_ o ni y(r) - /9 e x a c t(r)) + 0 ( /9 x -only ~ /^exact)2 

= 0 + 0 ( / 9 x _ o n i y - /O e Xact) 2 

The second equality follows from the fact that px-OTay minimizes the density func
tional E™ Hence we conclude that E™™^ ~ ^ f x a c t should be small . 
This estimate is confirmed by results of accurate variational and quantum Monte 
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3. GROSS ET Density-Functional Correlation Energy 47 

Carlo calculations on H ~ , He, B e + 2 , N e + 8 [13] and Be and Ne [28] as can be seen 
from Table 1. There, the conventional quantum chemical correlation energies of 
these systems are compared with the "exact" D F T correlation energies calcula
ted from equation (22) . For al l elements and ions shown, the relation (26) is 
confirmed, as expected. The difference between the D F T and the conventional 
Q C correlation energies is found to be small compared with the total correlation 
energies. However, the absolute differences, being sometimes as high as a few 
mHartrees, are of the same order of magnitude as the deviations between experi
mental total energies and total energies calculated with approximate state-of-the 
art density functionals [17]. 

Table 1: Comparison of exact DFT correlation energies with conventional quan
tum chemical correlation energies (QC) [29]. Δ denotes the difference between 
the QC and the DFT correlation energy (in Hartree units). Δ % denotes the value 
of \E%xact - E^\/\E™J in percent. 

D F T Q C Δ Δ % 
H - - 0 . 0 4 1 9 9 5 - 0 . 0 3 9 8 2 1 + 0 . 0 0 2 1 7 4 5.2 

He - 0 . 0 4 2 1 0 7 - 0 . 0 4 2 0 4 4 + 0 . 0 0 0 0 6 3 0.2 

Be+ 2 - 0 . 0 4 4 2 7 4 - 0 . 0 4 4 2 6 7 + 0 . 0 0 0 0 0 7 0.02 

Ne+ 8 - 0 . 0 4 5 6 9 4 - 0 . 0 4 5 6 9 3 +0 .000001 0.002 

Be - 0 . 0 9 6 2 - 0 . 0 9 4 3 + 0 . 0 0 1 9 2.0 

Ne - 0 . 3 9 4 - 0 . 3 9 0 +0 .004 1.0 

To conclude this section, we mention that there exists yet another possibility of 
defining a density functional for the correlation energy [4-11,13]: 

Êc[p] = Evt\p]-É™[<p£\p]] (29) 

where ¥>"/[/>] are the H F orbitals corresponding to the density p (see equation 
(12)) . If the exact density pexact is inserted in (29) [pexact] are the H F orbitals 
corresponding to some unknown external potential VQ whose H F density is /9exact-
The decomposition 

VQ{T)=:VQ{T) + VC{T) (30) 

makes clear that on the single-particle level the definition (29) leads to a hybrid 
scheme featuring the ordinary non-local H F exchange potential combined with 
the local correlation potential vc(r). In the present paper, this hybrid scheme wi l l 
not be further investigated. We only mention that, with arguments similar to 
the one leading to (26) Ec satisfies the inequalities: 

^c[Pexact] < ^ e x a c t < EJPHP] (31) 

as was first pointed out by Savin, Stol l and Preuss [8]. 
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48 CHEMICAL APPUCATIONS OF DENSITY-FUNCTIONAL THEORY 

Correlation Energies from Various D F T Approximations 

For further analysis, we compare in Tables 2, 3 and 4 the D F T correlation energies 
resulting from various approximations to iCFT[/)]. L Y P denotes the correlation-
energy functional by Lee, Yang and Parr [30], P W 9 1 the generalized gradient 
approximation by Perdew and Wang [31], and L D A the conventional local density 
approximation in the parametrisation of Ec by Vosko, W i l k and Nusair [32]. The 
first column, denoted by CS and K L I - C S , respectively, shows the results of a 
recently developed scheme which employs an optimized effective potential ( O E P ) 
including correlation effects [17]. In this scheme the full integral equation of the 
optimized effective potential method [33, 34], 

Σ / ^ ' ( Κ Τ ( Γ ' ) - « χ θ ( Γ ' ) ) 
1=1 J 

1 ^ΨΙΛ^Ψ^ ψΑτ)ψΙ{τ') + ce. = 0 

(32) 
with 

wXCt<r(r) := , χ— τ - τ - (66) 

is solved semi-analytically by an approved method due to Krieger, L i and Iafra
te [35, 36, 37]: 

K t E P ( 0 « V™{r) = Σ M O [<w (r ) + - t w ) ] (34) 

where the constants (V^J — ΰχον) are the solutions of the set of linear equations 

" Σ (** - M>") ( K c " - ««* , ) = Kc,> - ΰ % Φ j = l,... ,Νσ (35) 

i=l 

with 
Μ* := ι fr >*W"?r\ (36) 

J M r ) 
K S c . ( r ) : = £ ^ ^ ( r ) . (37) 

Here, uxcja denotes the average value of uxcja(r) taken over the density of the ja 
orbital , i . e. 

uxcja = J pja(r)uxcj(T(r)d3r (38) 
and similarly for Ϋ^σ. Like in the conventional Kohn-Sham method, the xc-
potential resulting from equation (34) leads to a single-particle Schrôdinger equa
tion with a local effective potential 

( - Ç + Mr) + J y ^ T j d V + W*(r) = ^ v ( r ) (39) 
(j = l,...,N„ * = U ) -
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3. GROSS ET AL. Density-Functional Correlation Energy 49 

The selfconsistent solutions <Pja(r) of equation (39) with lowest single-particle 
energies 6ja minimize the total-energy functional 

i C " Μ = Σ Σ / * 4 ( r ) ( - M ^(ryPr 
σ=],1 i=l J 

+ J p{r) v0(r) d3r 

2JJ |r — r'| 

- 1 Τ Τ Π £ Y £ Y , ^)ΨΙΑ*ΊΨΦ)ΨΑ*') 
K^u^JJ l---r'| 

+Ε™[{φίσ}). (40) 
In the above equation, E^ denotes the Colle-Sal vet t i functional [15, 16] for the 
correlation-energy given by 

£ c
c s = -efc/ 7(r){(p) ΣΜ--)Σΐν<ΜΓ)| 2 - j i v ^ r ) ! 2 

-τΣ /»σ(Γ)Δρ„(Γ) + j M r ) A p ( r ) 

where 

V (r) = l + d / » ( r ) - l , (43) 

nM-te _ c ' > < r >~* 
i ( r ) " « , ) • ( 4 4 ) 

The constants a, 6, c and d are given by 

a = 0.04918, 6 = 0.132, 
c = 0.2533, d = 0.349. 

In Table 2, the four approximate D F T correlation energy functionals are evaluated 
at the exact densities [13, 28] of H ~ , He, Be" 1" 2, N e + 8 , Be, Ne and compared with 
the exact D F T correlation energies given by equation (22). O n average, the 
K L I - C S values are superior. 
In Table 3 selfconsistent D F T correlation energies are compared with Q C values 
taken from [38]. In these selfconsistent calculations the approximate correlation-
energy functionals ϋ £ γ ρ , Ε™91, E^Ok are complemented with the approximate 
exchange-energy functionals E*88 [39], E™91 [31] and £ £ D A , respectively. In 
the K L I - C S case, the D F T exchange-energy functional (17) is of course treated 
exactly. The numerical data show three main features: 
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50 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Table 2: Non-relativistic absolute correlation energies resulting from various ap
proximate DFT correlation energy functionals, evaluated at the exact ground-
state densities [13, 28] of the respective atoms (in Hartree units). Exact values 
are from [13, 38]. \A\% denotes the mean value of \EC - ^ ^ t l / l ^ i x L t l * n 

percent. 

es L Y P PW91 L D A E X A C T 
H - 0.0297 0.0299 0.0320 0.0718 0.0420 
He 0.0416 0.0438 0.0457 0.1128 0.0421 
Be+ 2 0.0442 0.0491 0.0535 0.1512 0.0443 
Ne+ 8 0.0406 0.0502 0.0617 0.2030 0.0457 
Be 0.0936 0.0955 0.0950 0.2259 0.0962 
Ne 0.375 0.383 0.381 0.745 0.394 
|Δ|% 8.2 9.5 15.4 175 

Table 3: Non-relativistic absolute correlation energies of first and second row 
atoms from selfconsistent calculations with various DFT approximations. QC 
denotes the conventional quantum chemistry value [38]. |Δ|% denotes the mean 
value of | ( £ f F T - E?c)/E$c\ in percent. All other numbers in Hartree units. 

K L I - C S B L Y P P W 9 1 L D A Q C 
He 0.0416 0.0437 0.0450 0.1115 0.0420 
L i 0.0509 0.0541 0.0571 0.1508 0.0453 
Be 0.0934 0.0954 0.0942 0.2244 0.0943 
Β 0.1289 0.1287 0.1270 0.2906 0.1249 
C 0.1608 0.1614 0.1614 0.3587 0.1564 
Ν 0.1879 0.1925 0.1968 0.4280 0.1883 
0 0.2605 0.2640 0.2587 0.5363 0.2579 
F 0.3218 0.3256 0.3193 0.6409 0.3245 
Ne 0.3757 0.3831 0.3784 0.7434 0.3905 
N a 0.4005 0.4097 0.4040 0.8041 0.3956 
M g 0.4523 0.4611 0.4486 0.8914 0.4383 
A l 0.4905 0.4979 0.4891 0.9661 0.4696 
Si 0.5265 0.5334 0.5322 1.0418 0.5050 
Ρ 0.5594 0.5676 0.5762 1.1181 0.5403 
S 0.6287 0.6358 0.6413 1.2259 0.6048 
C l 0.6890 0.6955 0.7055 1.3289 0.6660 
A r 0.7435 0.7515 0.7687 1.4296 0.7223 
|Δ|% 3.13 4.52 5.10 120 
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Table 4: Non-relativistic absolute correlation energies of atoms from selfconsistent 
calculations with various DFT approximations. All numbers in Hartree units. 

K L I - C S B L Y P P W 9 1 K L I - C S B L Y P PW91 
Κ 0.8030 0.7821 0.7994 R b 1.7688 1.7832 1.9509 
C a 0.8269 0.8329 0.8467 Sr 1.8222 1.8355 2.0056 
Sc 0.8832 0.8855 0.9033 Y 1.8763 1.8863 2.0671 
T i 0.9371 0.9374 0.9613 Zr 1.9281 1.9363 2.1307 
V 0.9882 0.9882 1.0198 N b 1.9475 1.9558 2.1899 
C r 1.0073 1.0086 1.0736 M o 1.9905 2.0003 2.2551 
M n 1.0812 1.0861 1.1375 T c 2.0796 2.0874 2.3412 
Fe 1.1597 1.1620 1.2158 R u 2.1571 2.1637 2.4254 
Co 1.2324 1.2331 1.2933 R h 2.2278 2.2340 2.5081 
N i 1.3009 1.3010 1.3700 P d 2.3123 2.3154 2.6074 
C u 1.3693 1.3694 1.4562 A g 2.3561 2.3649 2.6705 
Zn 1.4273 1.4303 1.5212 C d 2.4146 2.4247 2.7373 
G a 1.4704 1.4753 1.5768 In 2.4600 2.4704 2.7964 
Ge 1.5101 1.5174 1.6343 Sn 2.5024 2.5135 2.8577 
As 1.5465 1.5570 1.6917 Sb 2.5419 2.5544 2.9193 
Se 1.6177 1.6288 1.7662 Te 2.6134 2.6252 2.9965 
B r 1.6795 1.6912 1.8393 I 2.6763 2.6876 3.0726 
K r 1.7355 1.7493 1.9112 X e 2.7338 2.7456 3.1475 

1. For most atoms, the absolute value of E$° is smaller than the absolute cor
relation energy obtained with any D F T method, as it should be according 
to the relation (26). 

2. The values of £ C
K L I " C S , Ε™*, £ C

P W 9 1 and E?° agree quite closely with each 
other while the absolute value of Ε^ΌΑ is too large roughly by a factor of 
two. We mention that due to the well known error cancellation between 
Ε^ΌΑ and £ C

L D A , the resulting L D A values for total xc energies are much 
better. 

3. The difference between £ C
D F T and E?° is smallest for the £ c

K L I " c s values, 
larger for £ C

L Y P and largest for £ c
P W 9 1 . The difference between £ C

Q C and 
E^^ has three sources: 

(a) The values of E^c are only approximate, i . e. not identical with u ^ a c t -

(b) The values of i Ç F T are only approximate, i . e. not identical with 
irDFT 
^c.exacf 

(c) As shown in the last section, the exact values E^xact and E^J^ are 
not identical. 
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Currently it is not known with certainty which effect gives the largest con
tr ibution. However, with the arguments given in the last section, we expect 
the contribution of (c) to be small . Assuming that the quoted values of E^c 

are very close to E^exact we conclude that ^ L I - C S is closest to E^J^. 

Table 4 shows correlation energies of atoms Κ through X e obtained with the 
various selfconsistent D F T approaches. In almost al l cases, the absolute K L I - C S 
values for Ec are smallest and the ones from PW91 are largest, while the L Y P 
values lie in between. In most cases, J^KLI-CS a n ( j #BLYP a g r e e within less than 
1 % while | ^ W 9 1 | i s larger (by up to 10 %) as the atomic number Ζ increases. 
We emphasize that reliable values for E^c do not exist for these atoms. 
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Chapter 4 

Ab Initio Molecular Dynamics with the 
Projector Augmented Wave Method 

Peter E. Blöchl1, Peter Margl2, and Karlheinz Schwarz3 

1IBM Research Division, Zurich Research Laboratory, Säumerstrasse 4, 
CH-8803 Rüschlikon, Switzerland 

2Department of Chemistry, University of Calgary, 
2500 University Drive Northwest, Calgary, Alberta T2N 1N4, Canada 

3Technical University Vienna, Getreidemarkt 9/158, 
A-1060 Vienna, Austria 

A n introduction to the ab-initio molecular dynamics approach of Car 
and Parrinello and to the projector augmented wave method is given. 
The projector augmented wave method is an all-electron electronic 
structure method that allows ab-initio molecular dynamics simula
tions to be performed accurately and efficiently even for first-row and 
transition metal elements. We describe the supercell approach and 
how it can be extended to isolated charged or polar molecules. A p 
plications to organometallic compounds, including ferrocene and the 
fluxional molecule beryllocene, demonstrate the capabilities of this 
methodology. 

Ten years ago, Car and Parrinello (1) invented the ab-initio molecular dynamics 
approach, which allows one to simulate the motion of the atoms from first pr inc i 
ples. This tool was promising for applications in chemistry, because it combines 
the accuracy of density functional calculations with the abil ity to study the f i 
nite temperature dynamics of molecules. A new electronic structure method, the 
projector augmented wave ( P A W ) method (2), overcomes the limitations of the 
pseudo-potential approach, which has been employed in most ab-initio molecular 
dynamics simulations. The P A W method makes the full all-electron wave func
tions accessible and allows first-row and transition-metal elements to be studied 
with moderate computational effort. This method has proven useful in a number 
of recent applications to physics (3, 4)-, chemistry (5-9), and biochemistry (10). The 
expectations that ab-initio molecular dynamics allows direct simulation of chemical 
processes on a picosecond time scale and a nanometer length scale are now being 
rapidly realized. 

0097-6156/96/0629-0054$15.00Α) 
© 1996 American Chemical Society 
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4. BLÔCHL ET AL. Ab Initio Molecular Dynamics with PAW 55 

In this article we sketch the basic ideas underlying the current methodology 
and describe some recent applications. We make an attempt to show the general 
picture at the expense of details that can be found in more specialized publications. 
Furthermore this paper is restricted to our own work, and thus the reader should 
be aware that there are other interesting developments (11-13) in this field that 
are not mentioned here. 

Ab- in i t i o Molecular Dynamics Approach 

Electronic structure calculations are usually performed for a static atomic structure. 
The dynamical behavior can be studied with molecular dynamics techniques that 
describe the interaction between atoms by parameterized inter-atomic potentials 
with parameters adjusted to experiment. Numerous such potentials have been 
devised and tuned to different environments. Their computational simplicity allows 
very large systems to be studied for long time scales. However, parameterized 
inter-atomic potentials have difficulties describing chemical reactions, because of 
the complexity of the interactions during bond breaking and formation as well 
as the lack of experimental information required to specify the parameters of the 
essential part of the potential energy surface. 

Ab- in i t i o molecular dynamics is one way to combine the virtues of these two 
distinct approaches. Here the dynamics of the system is simulated, but in each 
time step the forces are obtained directly from an accurate electronic structure 
calculation. Even though some simulations have been performed with the Hartree -
Fock method (14~16), most ab-initio molecular dynamics calculations are based 
on density functional theory (17, 18). W i t h i n the ab-initio molecular dynamics 
approach, it is currently possible to simulate systems having about a hundred 
atoms for a few to a few tens of picoseconds. Let us list here the time scales of 
some common processes to give a feeling for their magnitude: 

• Electronic transitions corresponding to visible light occur on a time scale of less 
than 2.5 fsec, so they can be regarded as instantaneous because the simulation 
is discretized in steps of about 0.25 fsec. 

• A period of a carbon-hydrogen stretch frequency takes about 10 fsec-0.01 psec. 
Other molecular stretch vibrations and hydrogen bond-bending modes take 
about twice as long, i.e. 20 fsec or longer. 

• Chemical reactions have two distinct t ime scales: one is the waiting time 
discussed above, and the other is the reaction event. If we talk about chemical 
reactions we can estimate the time it takes to overcome a barrier Ε A, i.e. the 
waiting t ime, as l / i / e x p ^ u ^ / f c ^ T ) , where ν is a typical molecular frequency. 
If we use ν = 1/20 fsec and at room temperature we find a waiting t ime 
of 1.4 psec for a barrier of a 10 k J / m o l corresponding to the breaking of a 
hydrogen bond, but 10 7 psec for a barrier of 50 k J / m o l such as in low-barrier 
chemical reactions. 
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This implies that at room temperature we can easily study molecular vibrations 
and low barrier processes such as hydrogen bond rearrangement or the fluxional 
motion of organometallic compounds. Note, however, that ab-initio molecular 
dynamics does not describe nuclear tunnel processes. Chemical reactions involving 
larger barriers, however, can be studied directly by simulations only at elevated 
temperatures. Above 1000 Κ we can access reactions involving barriers up to 
about 50 k J / m o l on a picosecond time scale. Whereas the waiting time is often 
substantially larger than the affordable simulation time, the reaction event typically 
occurs on the time scale of molecular vibrations, i.e. a few tenths or hundredths 
of a picosecond, which is well within the reach of ab-initio molecular dynamics 
simulations. Thus for systems with large barriers we first must locate the transition 
states using standard methods, and then we can study the dynamics of a particular 
reaction event by direct molecular dynamics simulations. 

What is the underlying idea of ab-initio molecular dynamics? As in classical 
molecular dynamics, the nuclear trajectories can be obtained from Newton's law 

MiRi = -VRiE , (1) 

where Ri is a coordinate of atom ζ, M , its mass and Ε the total energy expression. 
This equation can be discret ized using the Ver let algorithm, which replaces the 
acceleration by 

M t ) = M ± ^ m ± M ^ l , ( 2 ) 

where Δ is the time step. The Verlet algorithm appears to be superior to other, 
more complex algorithms if large t ime steps are chosen (19). The stability l imit of 
the Verlet algorithm lies at Δ = T m j n / 3 , where Tm\n is the oscillation period of the 
fastest vibration of the system. Hence the t ime step for a system with C - H bonds 
must clearly be shorter than 3 fsec. In practice, we use a t ime step of 0.25 fsec. 

If we use the total energy of density functional theory to derive the forces, we 
must know the self-consistent wave functions at each time step. Considering that a 
typical simulation requires several thousand to ten thousand t ime steps, it is hardly 
possible to perform an independent self-consistent calculation for each t ime step. 
This problem has been solved by Car and Parrinello wi th an ingeniously simple 
trick: They introduced an additional classical equation of motion for the quantum 
mechanical wave functions describing the electrons 

™ Φ |Φ η ) = - # | Ψ „ ) + £ | * m ) A m n , (3) 
m 

where H is the Hamiltonian and A m n the matrix of Lagrange multipliers, which 
ensure that the wave functions remain orthogonal to each other; 77ΐψ is a fictitious 
mass for the wave functions, a free parameter that ideally should be chosen very 
small . A typical value for τηψ is 1000 a.u. 

It is not immediately obvious that this coupled system of equations yields mean
ingful results. The main requirement is that the electrons remain close to the 
electronic ground state, i.e. at the Born-Oppenheimer surface. This requires the 
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wave function coefficients to be "cold" . A t the same time, however, the nuclei may 
be "hot" , corresponding to a high temperature. As with any thermally coupled 
system the temperatures wi l l equilibrate, ultimately rendering the forces acting 
on the nuclei meaningless because the density functional theory requires the wave 
functions to be in their ground state. The underlying reason why ab-initio molec
ular dynamics simulations are st i l l feasible is the adiabatic principle. It states that 
the thermal coupling of two subsystems with well separated vibrational spectra is 
small . This is indeed the case, at least for systems with a finite H O M O - L U M O 
gap, and hence the heat transfer from hot nuclei to cold wave functions is minute, 
often not even noticeable on a picosecond time scale. In practice the simulation 
is made stationary using thermostats for the electronic and the atomic subsystem 
absorbing the remaining heat transfer (20, 21). 

The adiabatic principle can easily be demonstrated for a simple classical model: 
It consists of a light particle wi th a mass m and a position r and a heavy particle 
with a mass M and a coordinate R. The two particles are coupled by a spring 
with a given force constant c. The light particle is analogous to the wave functions, 
whereas the heavy particle is analogous to the nuclei. This model reproduces many 
of the typical features of the coupled system of equations in ab-initio molecular 
dynamics such as slow heat transfer and increased effective mass of the heavy 
particles (or the nuclei). We obtain a coupled system of equations 

MR = F(t) - c(R - r) 
mr = -c(r - R) , (4) 

where F(t) is a time-dependent force acting on the nuclei. This system is trans
formed into a center-of-mass coordinate X = (MR + mr)/(M + m) and a relative 
coordinate χ = r — R. If we fix the position of the heavy particle and relax the 
light particle, the relative coordinate vanishes. Hence χ = 0 characterizes the i n 
stantaneous ground state or the Born-Oppenheimer surface. Now our system of 
equations reads 

(M + m)X = F(t) 

mx = -c(l + ^)x-^F(t) . (5) 

For the adiabatic principle to work, the frequency ω = yjc/m should be much 
higher than the frequencies contributing to F(t). This frequency can be controlled 
by choosing the mass of the light particle, which is analogous to the fictitious mass 
of the wave functions m $ , sufficiently small . That this is indeed the case in ab-
initio molecular dynamics, at least for closed-shell systems, has been demonstrated 
previously (22). In this l imit we can determine the relative coordinate analytically 

where A and φ are arbitrary constants. 
We can now summarize the main features that also occur in ab-initio molecular 

dynamics. 
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• If we start on the Born-Oppenheimer surface, for example χ = χ = F = 
F = 0, the coefficient A remains zero for al l times. The remaining deviation 
x(t) = ( l /u ; 2 ) (F (< ) /m + M) from the instantaneous ground state remains 
small because of the small factor 1 /ω2. 

• The light particle can also embark on a free oscillation described by the sec
ond term in equation 6. This is an uncontrolled deviation from the B o r n -
Oppenheimer surface. If such oscillations are large, the forces acting on the 
nuclei in an ab-initio molecular dynamics simulation become meaningless. 
However, in the adiabatic l i m i t , where ω goes to infinity, the particles de
couple and there is no heat transfer. Therefore the systems remains on the 
Born-Oppenheimer surface, i f that is where we started. In practice, i f the 
adiabatic principle is only fulfilled approximately, the amplitude of the free 
oscillation wi l l increase, but only very slowly. Thus it can easily be controlled 
by a small constant friction or a thermostat acting on the small particle (21). 

• The center of mass variable follows the forces like a particle with a slightly 
heavier mass M + m. This implies that the nuclear mass needs to be renor-
malized, so that the effective mass of the electronic wave functions, which is 
fictitious, is accounted for. Ways to estimate this renormalization have been 
described previously (2). 

• The position of the heavy particle is, however, not identical to the center of 
mass variable. The difference is proportional to the deviation of the light par
ticle from the ground state and multipl ied by a small factor m/(M + ra). In 
many simulations a close look reveals a tiny j i tter in the atomic trajectories, 
which is reminiscent of the remaining small free oscillation of the wave func
tions. However, these oscillations are not random and cancel exactly as long 
as the electrons remain close to the Born-Oppenheimer surface. 

It should be noted that such difficulties as the necessity of renormalizing the masses 
are so small that they remained undetected for a long time. However, as they 
surfaced, remedies have been developed. 

Projector Augmented Wave M e t h o d 

Before one can perform an electronic structure calculation, one must choose a basis 
set. Here, a tradeoff between the size of the basis set needed to obtain converged 
results and the effort to evaluate the total energy, the Hamiltonian, and the overlap-
matrix elements, must be found. The smallest basis sets are probably obtained with 
augmented wave methods such as the linear muffin t in orbital ( L M T O ) method 
(23), which uses sophisticatedly composed basis sets. A t the other extreme are 
the pure plane wave methods. Simple plane waves require enormous basis set 
sizes, so in practice pseudopotentials (24, 25) must be employed. O n the other 
hand, the integrations are tr iv ia l because the relevant operators can be cast in a 
diagonal or separable (β6, 27) form using Fast Fourier transforms ( F F T ) , making the 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
00

4

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



4. BLOCHL ET AL. Ab Initio Molecular Dynamics with PAW 59 

computational effort per basis function minute. Plane wave methods are promising, 
in particular for density functional theory, because here the electron density needs 
to be represented on a real space grid. For plane waves this is achieved by just 
another F F T , whereas the same operation easily becomes costly for more complex 
basis sets. A further advantage of plane wave methods is that an enormous know-
how has been accumulated with them for ab-initio molecular dynamics. 

However, even when pseudopotentials are employed, the basis set size required 
for describing first-row and transition-metal elements can be daunting. Further
more, pseudopotentials obscure the electron density near the nucleus. This puts 
information that depends on the local environment close to the nucleus, such as 
electric field gradients or hyperfine parameters, out of reach except through ind i 
rect reconstruction techniques (28). These are clear disadvantages for most typical 
applications in chemistry. 

The design goal for the projector augmented wave ( P A W ) method was to com
bine the advantages of the plane wave pseudopotential method with that of the 
all-electron augmented wave methods such as the linear augmented plane wave 
method (23). 

The P A W method borrows the idea of augmentation from the existing a l l -
electron augmented wave methods and uses composed basis sets. In this way 
augmented wave methods can accommodate the various shapes of the wave func
tions in different regions. Close to the nucleus the kinetic energy is large, rul ing out 
the use of a plane wave expansion. However, in this so-called augmentation region 
the potential is almost spherically symmetric, suggesting an expansion of the wave 
function into functions similar to atomic orbitals, which are separated according 
to their angular momenta and treated on a radial grid. Here the potential is domi
nated by the nucleus and the tightly bound core electrons, which are affected only 
slightly by the chemical environment of the atom. Thus, a small number of basis 
functions is sufficient to describe the wave functions in this region. O n the other 
hand, far from the nucleus the potential is shallow and the kinetic energy of the 
electrons is small . This is the region where the chemical bonds are located, so the 
wave function varies drastically from one molecular environment to another. Hence 
plane waves, which form a complete basis set, seem ideally suited to this region. 

The P A W method describes the all-electron valence wave function as follows: 
far from the nucleus, i.e. farther than the covalent radius, the wave function is 
described by a plane wave expansion. Near the nuclei, however, we subtract and 
add partial waves, which are similar to atomic orbitals, to the plane wave part in 
order to incorporate the proper nodal structure of the true wave functions. Thus, 
the plane wave part near the nucleus can be a smooth continuation of the wave 
function outside the atomic regions. The partial wave expansions are sufficiently 
localized within the augmentation regions that the overlap of partial waves centered 
on different nuclei need not be considered. 

In the P A W method an all-electron valence wave function |Φ) is therefore a 
superposition of three parts 

|Φ) = |Φ> + ΣΙ^)(P,-|Φ)-ΣΙ^ΙΦ> 
• t 

(7) 
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Equation 7 is the definition of the basis set used in the P A W method. It defines the 
variational degree of freedom for the all-electron wave functions. The plane wave 
expansion coefficients of |Φ) correspond to the orbital coefficients. Equation 7 
above can alternatively be read as a linear transformation from a fictitious pseudo-
wave function to the corresponding all-electron wave function. We briefly comment 
on each of the three individual terms. 

|Φ) : A smooth function extending over al l space, which can be expanded in plane 
waves. This is called a pseudo-wave function and is denoted |Φ). One can 
think of the tilde as an operator that turns the all-electron wave function into 
the corresponding pseudo-wave function. 

Σ ι Ι&)(p,|Φ) ' A partial wave expansion of the all-electron wave function near an 
atom. Part ia l waves are solutions of the Schrodinger equation for a given 
energy and the atomic all-electron potential (note: they need not be bound 
states!). They are denoted by the symbol | <£,·). In practice they are calculated 
in a spherical harmonics expansion on a radial logarithmic grid. The index i 
refers to a particular nuclear site, the angular momentum quantum numbers, 
and an additional index that simply counts the partial waves for the same site 
and angular momenta. In practice we use one or two partial waves per site 
and angular momentum. The highest main angular momentum of the partial 
waves is typically equal to or one higher than that of the occupied valence 
shells. 

Σι \Φί)(Ρχ\Φ) 1 A partial wave expansion of the pseudo-wave function in terms of 
pseudo-partial waves, denoted \φ{). Aga in , the tilde denotes that this is the 
pseudo-version of an all-electron partial wave. For every all-electron partial 
wave, a corresponding pseudo-partial wave is defined such that the pseudo-
partial wave is identical to the all-electron partial wave beyond the covalent 
radius. The shape of the pseudo-partial waves wi l l determine the general shape 
of the plane wave part, and therefore they are chosen as smooth functions. 

Both partial wave expansions become identical beyond the atomic regions. The 
coefficients are obtained as scalar products of the pseudo-wave function with pro
jector functions that are constructed such that each scalar product picks out 
the weight of the corresponding pseudo-partial wave from the pseudo-wave func
tion. The projector functions are entirely localized within the atomic regions and 
must fulfill the condition (Ρΐ\φί) = Once partial waves and projector func
tions are defined, they are fixed during the self-consistency or molecular dynamics 
simulation. 

As is common practice in most augmented wave methods, we employ the frozen 
core approximation. Thus the atomic core states are calculated accurately for an 
isolated atom and subsequently transferred to the molecular or crystalline environ
ment. This approximation has proven accurate for total energies and forces, as long 
as the core states are calculated accurately for the isolated atom. Semi-core states, 
which may be affected by different chemical bonding, can be treated explicit ly as 
valence states, should it be necessary. 
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How do the projector functions pick out the weight of a partial wave? We 
assume that the pseudo-partial waves form a complete set within an augmentation 
region. This means that any function Φ(Γ) , which may be defined in al l space, 
can be written - within the augmentation region - in the form Φ(Γ) = £,· <£(r)ct 

if the coefficients c, are chosen accordingly. We now want to determine the weight 
of a partial wave <j>j i n an arbitrary pseudo-wave function |Φ) by building the 
corresponding scalar product: 

•<fcl«> = B P i $ « = <* · (β) 
i 

The sum simply drops out because of the orthogonality condition between projector 
functions and pseudo-partial waves mentioned above. 

It turns out that the expectation values and the total energy expression can be 
decomposed like the wave function into one part that involves only smooth func
tions and two contributions from functions on a radial grid multipl ied by spherical 
harmonics. The total energy expression of the P A W method is identical to the den
sity functional total energy in the frozen core approximation if the plane wave basis 
is complete and if the partial wave expansions are complete in the corresponding 
augmentation regions. In reality these expansions have to be truncated. It turns 
out that convergence is achieved rapidly and that the accuracy can be controlled by 
increasing the number of terms in the expansion. Forces, Hamiltonian, and overlap 
matrix can be evaluated analytically. 

Even though the P A W method is an all-electron method, there is a close connec
tion between it and the pseudopotential approach. Because of the similarity of the 
plane wave expressions of P A W and the pseudopotential method, which are also 
the computationally most demanding operations, the numerical techniques for this 
part are related. Furthermore, the pseudopotential approach can be derived from 
the P A W method by a well-defined approximation. If the total energy contribu
tions related to the difference between plane wave part and the full all-electron wave 
function are expanded only to linear order in the deviation from the atomic density, 
working pseudopotentials are obtained. This also shows that nonlinear terms from 
exchange and correlation and from the on-site Coulomb repulsion, which are partic
ularly important for transition metal elements, may cause transferability problems 
in the pseudopotential approach. 

Supercells, Isolated Molecules, and Clusters 

If plane waves are used, periodic images are created automatically. This implies 
that a plane-wave-based method having discretized reciprocal space vectors always 
describes a periodic crystal. If nonperiodic systems are investigated, these artificial 
periodic unit cells are called supercells. They can be made sufficiently large so that 
wave functions of periodic images no longer overlap. This requires a vacuum region 
approximately 6 Â thick between the periodic images. The supercell approach is 
very convenient, because it allows crystals, surfaces, interfaces, point defects, and 
isolated molecules to be studied with the same tools. 
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A reverse approach is often taken in quantum chemistry, namely that the local 
electronic structure of extended systems is studied using isolated fragments. For 
molecules, this is the natural approach. For crystals, on the other hand, such 
fragments contain several hundreds to several thousands of atoms in order to create 
an intact region of more than 6 Â about a local center to be investigated. This is 
a task which is rarely feasible and scarcely done. 

However, the supercell approach encounters a serious problem if isolated 
molecules are studied that carry a charge or an electrostatic dipole. The elec
trostatic interaction is long-ranged, and does not vanish within the vacuum region 
separating periodic images. Hence this artificial electrostatic interaction between 
the periodic images has to be subtracted. We have devised one solution to this prob
lem (29). The idea is to construct a point charge model of the molecular charge 
distribution that reproduces the electrostatic potential outside the molecule. Once 
that has been obtained, the electrostatic interaction between the periodic images 
of the point charge model, which is obtained by Ewald sums, is identical to that 
of the original charge distribution. The underlying point charge model is obtained 
directly from an intermediate model of atom-centered spherical Gaussians. This 
Gaussian density is fitted to the true density with a bias function that enhances 
the weight of the small Fourier components of the true charge density, which give 
rise to the long-range electrostatic potential while suppressing large Fourier com
ponents. The electrostatic potential is obtained as the analytical derivative of the 
total energy, including the subtraction of the interaction energy with respect to the 
charge density. 

These point charges can be used in future applications. Most empirical inter
atomic force fields employed in classical molecular dynamics are based on atom-
centered point charges. Our calculated point charges may provide a reasonable 
starting point to parameterize force fields. They may also allow a quantum me
chanical calculation of a reacting group of molecules to be coupled to an environ
ment such as a solvent that is described by the simpler classical molecular dynamics 
approach (30). 

Applications 

The methodology described in the previous sections has been applied to bulk crys
tals, surfaces, and molecules. Here we summarize the results of some recent calcu
lations on organometallic compounds. 

Molecular Ground-State Properties. In this section we demonstrate that the 
P A W method is capable of describing chemical bonding among elements through
out the periodic table. We focus our attention on molecules containing metal atoms 
and first-row atoms because they pose particular demands on quantum-chemical 
methods and therefore serve as convenient examples to show the potential of the 
P A W technique. F i rs t , electron correlation effects, which are difficult to include 
beyond Hartree-Fock calculations, play an important role in transition metal com-
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Table I. Parameters and results of ground-state calculations using P A W . 
Bond lengths are given in angstroms. Calculations were performed in 
cubic or orthorhombic cells between 8 and 11 À in size. Invariance 
of results with respect to the box geometry was tested in each case. 
P A W calculations of Fe 2 and F e C O were performed with a plane wave 
cutoff of 60 R y d , calculations on C p and C p L i with 50 R y d , numbers in 
parentheses were obtained with a cutoff of 30 R y d . Stretch frequencies 
(°) are given in c m " 1 

Compound Variable PAW Other Calc. Expt. 

F e 2 (rAu) rFe-Fe 1.995(1.990) 1.96 3 1 2.02 3 2 

1.97 3 3 1.87 3 4 

^Fe-Fe a 407 412 3 1 299.6 3 5 

409 3 3 

C 5 H 5 ( 2 B 2 ) rc=c 1.367(1.369) 1.351 3 6 -
r c - c 1.466(1.466) 1.483 3 6 -
r c - c 1.401(1.402) 1.411 3 6 -

C s H s L K ' A O r c - c 1.423(1.423) 1.422 3 7 -
TC-H 1.096(1.101) 1.070 3 7 -
r L i - C 2.102(2.102) - -

F e C 0 ( 5 E - ) r Fe-C 1.864(1.859) 1.891 3 8 -
r c - o 1.176(1.176) 1.192 3 8 -

F e C 0 ( 3 E - ) r Fe-C 1.687(1.685) 1.717 3 8 -
r c - o 1.186(1.186) 1.209 3 8 -

F e C P 2 ( D 5 h ) TFe-Cp (1.607) 1.585 3 9 1.65 4 0 

r c - c (1.426) 1.421 3 9 1.440 4 0 

TC-H (1.096) 1.093 3 9 1.104 4 0 

F e ( C O ) 5 ( D 3 h ) rFe-C(ax) (1.781) 1.768 3 9 1.807 4 1 

rFe-C(eq) (1.778) 1.769 3 9 1.827 4 1 

rC-O(ax) (1.165) 1.145 3 9 1.152 4 1 

rC-O(eq) (1.168) 1.147 3 9 1.152 4 1 

R u ( C p ) 2 ( D 5 h ) TRu-C (2.168) - 2.196 4 0 

r c - c (1.438) - 1.440 4 0 

TC-H (1.098) - 1.130 4 0 

pounds and, second, the above-mentioned atoms have rapidly oscillating valence 
wave functions near the nucleus, even if pseudopotentials are employed, which make 
them demanding when dealt with using plane-wave-based techniques. 

Ground-state calculations have been performed for F e 2 in the 7 A U state, the 
cyclopentadiene radical (Cp) in the 2 B 2 ground state, l i th ium cyclopentadienide 
(L iCp) in the 1 A i ground state and the iron monocarbonyl (FeCO) molecule in the 
5 Σ ~ and the 3 Σ " states. Further examples include ferrocene, iron pentacarbonyl, 
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64 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

and ruthenocene. We employed the local density approximation; the local spin 
density approximation was used for those molecules that have a nonsinglet elec
tronic ground state, for which we used the parameterization by Perdew and Zunger 
(42). The results of these tests are given in Table I. Further technical details can 
be found in Refs. (6, 7). 

Our results are in good agreement with experimental and other theoretical re
sults, establishing that equil ibrium geometries and vibrational frequencies can be 
computed reliably by the P A W method, applying the supercell approach. The basis 
set size to achieve this goal is modest, which means that calculations can easily be 
carried out on a workstation. 

Vibrational Properties: Ferrocene. A first-principles molecular dynamics 
trajectory contains a wealth of information about molecular motions far transcend
ing the analytic power of "static" techniques. The accuracy of the calculated 

2000 3000 

Wavenumber / 1/cm 

Figure 1: Vibrat ional 
spectrum of ferrocene d i 
vided according to i r 
reducible representations 
and eigenvectors as cal
culated by P A W . Spec
tra are arranged in groups 
of six belonging to differ
ent irreducible representa
tions, from bottom to top: 
Total (no symmetry and 
no eigenmode projection) 
spectrum; in groups of six 
spectra: spectra belong
ing to the A(=A\ + A2) i r 
reducible representations, 
spectra for E\, spectra 
for the E2 irreducible rep
resentation. Reproduced 
with permission from (7). 
Copyright 1994 American 
Institute of Physics. 
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molecular motions can be tested rigorously by comparing them to the experimen
tally accessible vibrational spectra. A method developed by Kohanoff et a l . (43) 

and improved by the authors (7) allows the vibrational frequencies and eigenvec
tors to be extracted directly from a dynamical trajectory. This method has been 
applied to the ferrocene molecule (7), for which a vibrational analysis has long been 
missing due to experimental difficulties. Frequency shifts for deuterated ferrocene 
and the corresponding eigenvectors are obtained by diagonalizing the dynamical 
matrix after renormalizing it according to the changed masses. The accuracy of 
the procedure was tested and confirmed on the benzene molecule, for which the 
vibrational assignments are well established. 

A l l 57 vibrations of ferrocene have been determined. A t the bottom of Figure 
1, the total Fourier transform ( F T ) vibrational spectrum of ferrocene is shown. 
This spectrum is too complicated for a complete vibrational assignment because 
only about 15 of the 34 fundamentals are discernible. However, by projecting them 
onto the vibrational modes, the individual contributions can be clearly separated 
(spectra 1-34 in Figure 1). Another independent vibrational analysis of ferrocene 
within density functional theory, albeit using second derivatives of the total energy 
(44)ι agrees well with our results. Based on these data, we partially revised the 
previously accepted assignments (45, 46) f ° r f ° u r modes of ferrocene as shown in 
Table II. 

Table II. New assignments proposed for the eigenmodes of ferrocene 
based on the present first-principles molecular dynamics investigation. 
T h e leftmost column denotes the mode number using the nomencla
ture introduced by Lippincott and Nelson (45). T h e numbers are the 
peak locations found for the modes in the P A W simulation or by ex
periment. Correlations are drawn between the P A W frequency and the 
experimental frequency by using the same superscripts for related fre
quencies. Superscripts C and Ε are unmatched in the other column, 
indicating that a peak in the region of 823/810 was probably not re
solved in experimental spectra and the experimental peak at 1255/1250 
is probably not due to a fundamental vibration. 

Mode PAW Expt. 
^24/30 
^25/31 
^27/33 
^5/7 

1020/1011^ 
868/863 B 

823/810 c 

1205/1205 D 

1191/1189" 
1058/1055 Λ 

897/885* 
1255/1250^ 

Fluxional Dynamics of Organometallics: Beryllocene. Organometallics of
ten exhibit interesting dynamical phenomena such as fluxional structural rearrange
ments. Such phenomena can ideally be studied by direct simulation, because the 
waiting time between fluxional events mentioned above is often extremely short (of 
the order of picoseconds) and on the other hand because the anharmonicities of 
such complex total energy surfaces are fully taken into account. We have studied 
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beryllocene, an extreme case, for which fluxionality completely blurs even low-
temperature experiments so that its structure has remained unclear unt i l recently. 
The fluxionality is due to the much weaker interaction of Be with the C p rings 
than with Fe in Ferrocene, due to the lack of d-electrons. 

Our geometry optimizations yield the energetic ordering ηι-η* < η2-η5 < η3-
η3 < r/ 5-77 5-D 5/i < Tj5-^-Dsd of the different isomers. A l l isomers are energetically 
separated by less than 11 k J / m o l . We have performed several molecular dynamics 
simulations totaling « 1 5 ps. During these simulations, we observed intramolecular 
transformations, which can be divided into two classes as sketched in Figure 2. 

• In the "gear-wheel" mechanism, the bond between Be and the η1 ring migrates 
from one carbon atom to the next on the same ring. The in i t ia l and final 
states are identical except that the 771 ring is rotated 72° about its axis. The 
transition state is ^ -^ - coord ina ted and has an activation energy of 5 k J / m o l . 

• The "molecular-inversion" mechanism interchanges the roles of the η1 and 
the r/ 5 rings by a motion of the Be atom parallel to the ring planes from 
the centrally bonded position of one ring to that of the other ring [Figure 2 
(bottom)]. The transition state for this mechanism is an η3-η3 configuration 
of C2/1 symmetry with an activation barrier of 8 k J / m o l . 

During a simulation of 8 psec at 400 K , we observed ten successful gear-wheel 
events and two molecular inversions. Taking into account al l our accumulated 
molecular dynamics data, the gear-wheel and the molecular-inversion mechanisms 
have rates of 1-4 psec" 1 and 0.3-1.5 psec" 1 , respectively. Whereas N M R measure
ments of the spin relaxation times of the 9 B e nucleus (47) suggested that the two 
mechanisms occur simultaneously, we find that they are mostly well separated and 
occur on different t ime scales. The measured rates for molecular rearrangement are 
1 0 l o ± 1 s _ 1 . These measurements should be compared only to the molecular inver
sion process, because the spin-lattice relaxation of the 9 B e nucleus should be caused 

Figure 2: Schematic drawing of the 
intramolecular rearrangement path
ways of beryllocene. Top: gear-wheel 
mechanism. Bottom: molecular-
inversion mechanism. Reproduced 
with permission from (9). Copyright 
1995 American Institute of Physics. 
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primari ly by the inversion of the molecular dipole. Given the lower temperature of 
the experiment ( « 300 K ) and the viscosity of the solvent, the agreement between 
experiment and the P A W simulations is quite satisfactory. 

The crucial parameter for rearrangements is apparently the t i l t angle between 
the C p rings. A t 400 Κ we find on average large t i l t angles «20° compared to the 
ground-state t i l t of 8°. This is caused by the larger entropy of the η1-η5 configura
tion. Molecular inversions and gear-wheel processes occur primari ly for small t i l t 
angles, where the Be atom exhibits large amplitude oscillations. 

Conclusion and Outlook 

We hope to have shown that the P A W method in combination with the ab-initio 
molecular dynamics approach is an interesting method for applications both in 
physics and chemistry. Currently, a number of new calculations are in progress. 
Coordination complexes of up to one hundred atoms are being studied to unravel 
the reaction mechanisms of enantioselective catalysts. The adsorption properties 
of methanol in a zeolite have been investigated using dynamical simulations (48). 
It has proven possible to study this process for a complete sodalite crystal with 
periodic boundary conditions and with no symmetry constraints for about 10 psec. 
Other areas involve adsorption properties of organic molecules on semiconductor 
surfaces, molecular crystals (49), superionic conductors, and many more (50). 
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Chapter 5 

A Gaussian Implementation of Yang's 
Divide-and-Conquer Density-Functional Theory 

Approach 

Alain St-Amant 

Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, 
Ontario K1N 6N5, Canada 

A gaussian implementation of Yang's divide-and-conquer approach to 
density functional theory has been created. Divide-and-conquer ap
proaches to the fits of the density and the exchange-correlation po
tentials have been developed. The concept of extended buffer space is 
introduced. It extends the spatial extent of buffer space while keep
ing the number of basis functions under control. Tests on dipeptide, 
tripeptide, and tetrapeptide analogues are presented. The results sug
gest that we wi l l have to go to much larger systems before our gaussian 
divide-and-conquer approach outperforms the conventional gaussian 
density functional approach. 

Computational chemists are increasingly turning towards density functional the
ory ( D F T ) [1] to perform caclulations previously done by conventional ab initio 
methods [2]. D F T allows us to treat systems much larger than those currently 
feasible wi th in any correlated post-Hartree-Fock approach. Nevertheless, truly 
large systems are beyond conventional D F T methods. In theory, we could work 
directly wi th the electronic density, a tremendous computational simplification. 
However, in practise, we must make use of molecular orbitals, and D F T schemes 
thus scale between N2 and N3, where Ν is related to system size. 

Yang has proposed a divide-and-conquer ( D A C ) approach offering linear scal
ing [3]. E l iminat ing the need for molecular orbitals that span the entire molecule, 
it brings us closer to an approach dealing directly with the density. The D A C ap
proach has been implemented [3] within a program similar to D M o l [4]. We wish 
to implement a D A C scheme within the linear combination of gaussian type or
bitals ( L C G T O ) - D F T formalism, originally developed by Dunlap , Connolly, and 
Sabin [5], popularized by such programs as DGauss [6] and D e F T [7]. The fitting 
procedures that make L C G T O - D F T so efficient are not found within a DMol - type 
scheme. We must address this point within our gaussian D A C approach. 

0097-6156/96/0629-0070$15.00/0 
© 1996 American Chemical Society 
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5. ST-AMANT Yang's Divide-and-Conquer DFT Approach 71 

For the systems of interest to us, we demand a higher level of accuracy than 
that found in previous D A C schemes. We would like to see our D A C scheme 
introduce errors, versus conventional gaussian D F T , no greater than 0.2 kcal m o l " 1 

i n relative conformational energies of small peptides. It is important to note that 
this 0.2 kcal m o l " 1 threshold is not the error relative to experiment, but rather to 
conventional calculations where the only difference lies in the fact that the D A C 
approach is not used. We wish to establish a well-defined D A C protocol that w i l l 
consistently give us this k ind of precision so that we can be assured that any major 
errors are a result of the D F T method and not the D A C implementation. 

T h e K o h n - S h a m Equations 

In the Kohn-Sham (KS) approach [8] to D F T , the density, p(r), is expressed as 
the sum of the square moduli of Nocc doubly-occupied (we could readily generalize 
this to the spin-polarized open shell case) K S molecular orbitals, 

p(τ) = 2Σ\Ψ>(τ)\ί. (1) 
» 

W i t h i n the K S approach, the electronic energy is partitioned as follows, 

Ε [p(τ)\ = T lp(r)) + U [p(r)) + Exc [p(r)}. (2) 

Τ \fi(r)] is the kinetic energy of non-interacting electrons, 

Τ W)\ = 2 Σ / * i ( r ) ^ * ( r ) d r . (3) 

U \p(r)] is simply the classical coulomb energy, 

where {ZA} and { R A } are the nuclear charges and coordinates. EXC [p(r)] is made 
to contain al l the remaining effects of exchange and correlation ( X C ) . 

The K S molecular orbitals, {^-(r)}, are obtained by solving the K S equations, 

Ηφ^τ) = e,^(r), (5) 

where Η is the K S operator. It is given by 

where vxc(r) is the X C potential, 

(7) 
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72 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

The total energy can be expressed in terms of the K S eigenvalues, {ε,·}, 

w ~ 1 · ' p ( r M r ' ) 

/
nuclei 7Α7τ> 

Κ Γ Μ # + £ Κ [ Η Γ ) ] + Σ Σ 4 1 · (8) 

In the above expression, the sum of the K S eigenvalues is first corrected for the 
double-counting of coulomb repulsion. It is then corrected for the fact that H 
contains v x c (r). Its contribution is subtracted out and replaced by Exc [p(r)]. The 
final term is the tr iv ia l internuclear repulsion term. 

T h e Conventional Gaussian Density Functional Approach 

In the conventional L C G T O - D F T approach [5, 6], the K S orbitals are expressed 
as a linear combination of Ν contracted gaussian basis functions, 

^ ) = Σ Μ · (») 
μ 

The coefficient matr ix , C , is obtained by solving 

H C = SCe, (10) 

where the matr ix elements Ημν and 5 μ ι / are given by 

* ~ = + Χ Ϊ Λ Ζ \ + J 0 ? * ' + V - ( R ) } X - ( R ) D R 

and 

S„„ = / x „ ( r ) X l , ( r ) d r . (12) 

ε is the vector of K S eigenvalues. Combining equations (1) and (9), p(r) is now 

P(r) = 2 E 
Ν Ν Nt occ 

= 2 Σ Σ Σ ^ μ , α , Χ Μ ( Γ ) χ , ( Γ ) . (13) 
μ ν χ 

Barr ing any simplification, Ημν w i l l require the evaluation of four-center two-
electron integrals, leading to a formal N 4 scaling. However, p(r) is fit by an 
auxil iary set of M uncontracted gaussians, {y>*(r)}, 

M 
p(r) « p(r) = Σ «k<Pk(r). (14) 

k 

Vector a is obtained by a variational, analytical , procedure [5] that minimizes 

j j W ) - M M £ - & ) ] ^ . ( 1 5 ) 
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5. ST-AMANT Yang's Divide-and-Conquer DFT Approach 73 

Figure I. Alanine Dipeptide. 

subject to the constraint that p(r) remains normalized to the total number of 
electrons in the system. Inserting p(r) into equation (11), Ημν now requires only 
the evaluation of three-center two-electron integrals. Since M and Ν are of the 
same order [9], this step now formally scales as only N 3 . 
The X C potential is fit by a second set of M auxil iary gaussians [5], {< /̂(r)}, 

M 

M r ) « M r ) = E W W ' (16) 

Unl ike the fit to /?(r), this fit can neither be analytical nor variational. Vector b, 
is obtained by least squares fitting vxc(r) on a set of grid points, {Ri}, 

points 

Σ b x c ( R i ) - M R i ) ] 2 ^ / (17) 

with associated weights, {Wj} . To evaluate v x c (Ri )> we must first synthesize 
/>(Ri), v ia equation (13). This scales as N2. Since the number of grid points 
scales linearly wi th system size, as does N, this procedure over the entire set of 
grid points also scales as N3. Inserting vxc(r) into equation (11), Ημι/ requires the 
evaluation of three-center overlap integrals, yet another N3 step. 

Divide-and-Conquer Density Functional Theory 

It is apparent from equation (3) that the kinetic energy component of the total 
energy requires the use of molecular orbitals delocalized over the entire extent 
of a molecule. Yang has recently proposed a D A C approach [3] that brings us 
closer to true density functional approaches where we work directly with p(r) and 
eliminate the need for molecular orbitals. A rigorous theoretical justification of 
the method is given elsewhere [3]. Here we w i l l focus on describing the approach 
with in a linear combination of atomic orbitals ( L C A O ) context. 

A molecule may be divided into a set of N8Ui, chemically intuitive subsystems. 
For example, the alanine dipeptide analogue, Figure I, may be partitioned into 
three C H 3 fragments, two N H fragments, two C O fragments, and a C H fragment. 
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74 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

The electronic density can be arbitrari ly partitioned in the following fashion, 

P(r) = Σ A O (18) 
a 

where 

Neub Nsui, Nocc 

Pa(r) = Σ P a(r)/»(r) = 2 £ p«(r ) £ Μ*)ΐ, (19) 

a a i 

provided that pa(r) is a function that obeys, at each point in space, the constraint 

N.ub 

Σ Ρ Ή = 1· (20) 
or 

We can now change the summation over doubly-occupied orbitals in equation (19) 
to one over the J V o c c doubly-occupied orbitals and the Nwr empty v ir tual orbitals, 

Nsub Nocc+Nvir 

P(*) = 2 Σ P"(r) Σ v(eF-ei)Mr)\2. (21) 
a i 

In the above expression, 6F is the Fermi energy and η is a Heavyside function 
equal to one when ε, < SF and zero when ε<\> EF-

From equation (21), we see that if we make pa(r) go to zero as we move 
away from the atoms in subsystem a , we need only know φ%(τ) i n the vic ini ty of 
subsystem a . This can be accomplished with the following definition for p a ( r ) , 

^ Μ _ œ'[pïtm(\r-RA\)f 

Σ ^ Μ ^ ( Ι Γ - Κ Β Ι ) ] 2 

where pA
tom(\r — R A | ) is the spherical atomic density of atom A , centered at R A , 

and the summations in the numerator and the denominator run over a l l the atoms 
i n subsystem α and over al l the atoms in the molecule, respectively. 

Having built pa(r) to localize the contributions of {V>i(r)}, we begin to imple
ment a D A C approach and approximate the true {^t(r)} by subsystem orbitals, 
{V>?(r)}. A modified version of equation (10) is solved for each subsystem a , 

HaCa = SQCaea, (23) 

where H a and S a contain the elements of Η and S where both basis functions are 
part of subsystem a . W i t h C a , each φ?(τ) is expanded, v ia equation (9), wi th in 
subsystem a's NQ basis functions. 

Plugging the subsystem orbitals into equation (21), p(r) is approximated by 

p(r) « p(r) = 2 £ p"(r) £ v(eF - ef ) |#»(r)| 2 . (24) 
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5. ST-AMANT Yang's Divide-and-Conquer DFT Approach 75 

To avoid oscillations in the course of a calculation and achieve self-consistency, i t 
is necessary to work with a unique value of 6F- We must thus further approximate 
p(r) by replacing the Heavyside function wi th a Fermi function 

p(r) = 2 Σ p«(r) Σ ^ _ , ? ) |tf (r)|» (25) 

where β is an adjustable parameter that makes the Fermi function approach the 
Heavyside function as it is increased. Fortunately, the final results are fairly 
insensitive to its precise value and we have simply used the previously suggested 
value [3]. F inal ly , 6F is chosen such that the approximate D A C density, />(r), is 
normalized to the number of electrons in the molecule, JV e , 

/ p(r)dr = 2 Ç Ç 1 + e _ , ( e F - e ? ) / I V > f ( r ) | 2 dr = N.. (26) 

The divide-and-conquer total energy, 

E[p(r)] = 2 £ £ E - L - e ? ) £ ° / ? » W W ' * 

4 / / n 7 ^ d r d r ' " / ^ r > ^ d r + E*< • (27) 

is s imply the appropriately modified version of equation (8). 
In practise, it is found that expanding (r)} wi thin the basis of only those 

atoms actually in the subsystem is too severe an approximation [3]. Therefore, 
equation (23) is solved within the basis of the subsystem's atoms and its associated 
buffer atoms. Buffer atoms "neighbor" the subsystem. As the size of the buffer 
space increases, we project Η onto a larger portion of the molecule's total orbital 
basis. The {ψ°(τ)} in turn approach {ΨΪ{Γ)} and the approximation made in 
equation (24) improves. Defining the buffer space involves a compromise between 
accuracy (adding more buffer atoms) and computational efficiency (adding less 
buffer atoms). It is important to note that even though Na increases as we add 
buffer atoms, {pa(r)} remains unaffected. Contributions to p(r) are st i l l localized 
about only the true subsystem atoms. Contributions to p(r) i n the vic inity of the 
buffer atoms wi l l be generated by their own subsystem calculations. 

The computational advantages D A C D F T are twofold. F i r s t , it is inherently 
parallelizable. The bulk of the C P U time is spent in the independent construction 
and diagonalization of subsystem K S matrices Ha. Second, for very large systems, 
it w i l l achieve linear scaling. For small molecules, buffer space may extend over 
a significant fraction of the molecule, and it would be computationally inefficient 
to work on a collection of subsystems that are almost as large as the original 
system. However, as the molecule's size increases and buffer space spans but a 
small fraction of the molecule, the C P U requirements of any subsystem calculation 
w i l l plateau at a certain value provided a fast multipole method is used to handle 
the long range electrostatics [10]. A t this point, the total C P U time w i l l scale 
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76 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

l inearly wi th the number of subsystems, which in turn scales linearly wi th system 
size. Linear scaling is thus achieved. D A C D F T is a truly promising approach for 
tackling very large systems with today's massively parallel supercomputers. 

A Gaussian Implementation of Divide-and-Conquer D F T 

The auxil iary basis sets of conventional gaussian D F T present a new problem 
with in D A C D F T . Unless we adopt a D A C approach for the fits of p(r) and 
Vrc(r), there is no point in adopting a gaussian D A C approach at a l l . 

In our D A C approach to fitting p(r), we would like to end up wi th a final 
expression that closely resembles that found in conventional L C G T O - D F T , 

M 

p(Γ) = ΣΑ*^(Γ)> 
k 

(28) 

where the M auxil iary basis functions, {<£>jt(r)}, s t i l l span the entire molecule. 
The double tilde notation is used to indicate that we are approximating the true 
L C G T O - D F T p(r) in two ways: we are adopting a D A C approach to get an 
approximate density which we in turn fit. 

Our scheme is the following. W i t h i n each subsystem, pa(r) is constructed, 

Σ ^ Χ , ( Γ ) (29) 

pa(r) is fit within the auxil iary bases of both the subsystem and buffer atoms, 

Ma 

* ( r ) « ^ ( r ) = £ < V > * ( r ) . 
k 

(30) 

Ma is the number of auxil iary functions in the subsystem and its associated buffer. 
Unfortunately, the fitting procedure can no longer be variational, nor analytical . 
The complexity of the expression for pa(r) does not permit an analytical approach. 
We must go to a numerical approach where the |r — r ' l " " 1 factor present in equa
tion (15) is no longer feasible. We thus lose the variational aspect of the fitting 
procedure. We must perform a straightforward numerical fit of />a(r), min imiz ing 

points 

Σ [ P W - ^ R I ) ] 2 ^ (31) 

on a grid spanning the entire molecule. However, pa(r) localizes pa(r) to a small 
region of space, thus el iminating a large number of points. 

Once a l l the subsystems fit, we simply sum the subsystem fit coefficient vectors. 
Their sum, a T , is then used to construct the fit to the molecule's total density, 

N.ub NtubMa M /N,ub \ M 

Χ*) = Σ P"(r) = Σ Σ = Σ Σ < Mr) = Σ a l ( 3 2 ) 
<x o k k \ « / k 
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5. ST-AMANT Yang's Divide-and-Conquer DFT Approach 77 

We now have a fit of p(r) without ever having to deal wi th the entire molecule at 
any point other than the tr iv ia l addition of the subsystem fit coefficients. 

To fit i> x c(r), we must take a slightly different approach. A t any point in 
space, we must know p(r) at that point before we can assign it a value of vxc(r). 
Fortunately, in the course of constructing p(r) , we had to evaluate pa(r) at each 
point where pa(r) was non-négligeable. A t each point, we continually sum up the 
contribution of the />a(r)'s. Once we have the total unfitted D A C density, /5(r), at 
each point, we evaluate vxc(r) at each point. If we were to use a gradient-corrected 
functional, we would have to construct the derivatives of p(r) as well. This adds 
an extra cost, but it can be done using the same approach used to construct p(r). 
In this paper, we w i l l l imi t ourselves to the local density approximation ( L D A ) . 

We may now localize the contribution of each subsystem to vxc(r). This is 
achieved by using the same partit ion function as before 

v°xc(r) = p°(r)vxc(r). (33) 

The subsystem contributions, v£ c (r) , are then fit, minimiz ing 

points 

Σ [ i & ( R i ) - U R i ) ] W (34) 

over the grid points where p a ( r ) is non-négligeable. This is done within the Ma 

X C auxil iary basis functions of the subsystem and its associated buffer, yielding 

^("•)*C TW = E W W . (35) 

We have again adopted a double tilde notation for the same reasons as above. As 
with /5(r), the subsystem fit coefficients are summed together to yield vxc(*), 

NBub NeubMa M /Ntub \ M 

U r ) = Σ C ( r ) = Σ Σ « r ) = Σ Σ υ) ΦΜ = Σ t f M r ) . (36) 
a a l l \ a j \ 

Once p(r) and vxc(r) are known, the matrix elements of H a for any subsystem 
can be evaluated analytically, as in the conventional L C G T O - D F T approach. 

It should now be noted that as system size increases, both the number of 
subsystems and the number of auxil iary basis functions grow linearly. The method 
thus formally scales as N2 overall. However, the X C integrals are three-center 
overlap integrals that vanish rapidly as the auxil iary basis function is moved away 
from the subsystem containing the two orbital basis functions. The same cannot 
be said for the three-center two-electron integrals. However, as we move away from 
a subsystem, we can replace p(r) wi th point charges. The C P U costs associated 
wi th these point charges should be négligeable and we should recover linear scaling. 

E x t e n d e d B u f f e r S p a c e 

Applications of D A C D F T have to date used buffer atoms in an " a l l or nothing" 
fashion. If an atom is judged to be sufficiently close to the subsystem, its entire 
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78 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

basis is added to the subsystem's buffer. Otherwise, its basis is completely ignored. 
We report here the first use of what we call extended buffer space. 

To use an extended buffer, we must first define various levels of basis set 
sophistication. For the orbital bases, we can have, for example, double-C wi th 
polarization ( D Z P ) , double-^ (DZ) , and single-^ (SZ) bases. For the auxil iary 
bases, conventional L C G T O - D F T usually has a set of s functions augmented by a 
second set of s, p, and d functions constrained to having the same exponent. We 
w i l l cal l this the L 2 basis. We wi l l create a lower level basis, L I . It is s imply the L 2 
basis w i th the p and d functions dropped from its second set. In our calculations, 
the L 2 basis for a heavy atom has four s functions augmented by three sets of s, 
p, and d functions, for 34 functions in a l l . Hydrogen atoms have three and one, 
respectively, for 13 functions in a l l [9]. 

W i t h various levels of basis set sophistication, we can phase out buffer space 
gradually. For example, if we are performing a D Z + P / L 2 calculation, then subsys
tem atoms and very near neighbor atoms, true buffer atoms, would carry D Z + P 
orbital bases and L2 auxil iary bases. More distant neighboring atoms would be in 
the extended buffer and would carry D Z / L 1 bases. Atoms even further away would 
st i l l be in the extended buffer, but they would see their orbital bases dropped to 
SZ. A t a certain distance, we would truncate the buffer space. The goal of this 
sample D A C calculation is to reproduce the conventional D Z - I - P / L 2 results. A n 
atom w i l l carry a D Z + P / L 2 basis within its own subsystem calculation. For 
other subsystem calculations, the quality of this atom's basis w i l l be determined 
by its proximity to the subsystem under study, going from D Z + P / L 2 to D Z / L 1 to 
S Z / L 1 to nothing as the subsystems get further and further away. The extended 
buffer approach succeeds in greatly extending the spatial extent of buffer space 
while keeping Na and Ma under control. The value of these last two numbers 
ult imately determines the cost of a subsystem calculation. 

Results and Discussion 

In an attempt to establish a reliable protocol for gaussian D A C D F T , we have 
carried out a series of tests on a dipeptide (Figure I), a tripeptide (Figure II), and 
a tetrapeptide (Figure III). The dipeptide geometries were optimized at the L D A 
level while those of the tripeptide and tetrapeptide were subsets of the many local 
m i n i m a on the P M 3 potential energy surfaces of these systems. We have divided 
each molecule into three subsystems for testing purposes. To reduce C P U t ime, a l l 
tests have been performed within the L D A . For such systems, the L D A has been 
shown to be entirely inadequate [11]. However, a protocol proven reliable wi th in 
the L D A w i l l no doubt remain reliable once gradient-corrections are introduced. 

Our first tests were performed on the alanine dipeptide analogue ( A D A ) , F i g 
ure I. A D A is divided into three subsystems: the two terminal methyl groups 
and everything else remaining in the interior. B o t h methyl subsystems are in the 
buffer of the central subsystem. The central subsystem is i n the buffer of each 
methyl subsystem. Each methyl subsystem is in the extended buffer of the other. 
The distance between any atom in one methyl subsystem and any atom in the 
other is at least 5.3 Â in a l l four A D A conformers studied. Table I lists the results 
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5. ST-AMANT Yang's Divide-and-Conquer DFT Approach 79 

Figure II. F O R - G L Y - G L Y - N H E Tripeptide. 

Figure III. F O R - G L Y - G L Y - G L Y - N H E Tetrapeptide. 

of tests of various protocols. The orbital and auxil iary bases assigned to atoms in 
the subsystem and its associated buffer are in the second and th ird columns. The 
orbital and auxil iary bases assigned to extended buffer atoms are i n the fourth and 
fifth columns. W i t h four conformera, there are six relative conformationl energies. 
The root mean square (rms) errors in the relative conformational energies in our 
D A C calculations are in the sixth column, under rms AAE. The rms errors i n the 
four total energies are in the last column, under rms AE. Errors are calculated 
against conventional D F T calculations which use the bases listed in the second 
and th i rd columns and the approach outlined i n the section on our implementa
tion of gaussian D A C D F T . In a sense, our reference numbers are results of D A C 
calculations on molecules with only one subsystem. Since our test D A C D F T cal
culations have the central subsystem's buffer extending over the entire molecule, 
the D A C D F T approach is clearly not meant to be more computationally efficient 
for A D A than the conventional D F T approach. Our goal is to test various D A C 
D F T protocols on relatively small systems. 

Protocols I to III make no use of extended buffer space. The orbital and 
auxil iary bases of the opposing methyl subsystem are not included in each methyl 
subsystem calculation. This is not the same as setting K S matr ix elements to 
zero in conventional D F T : the central subsystem sees the entire K S matr ix , w i th 
no matr ix elements arbitrarily set to zero. Clearly, rms AAE is unacceptable. 
Buffer space cannot be truncated at 5.3 Â. The rms AE values are of the same 
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Table I. Test of D A C Protocols on the Alanine Dipeptide Analogue 

subsystem/buffer basis extended buffer basis rms ΔΔΕα rms AEb 

protocol orbital auxiliary orbital auxiliary (kcal mol" 1) (kcal mol" 1) 

I DZP L2 none none 2.28 1.68 
II DZ L2 none none 2.23 1.59 
III SZ L2 none none 2.07 2.58 

IV DZP L2 DZP none 1.64 2.19 
V DZ L2 DZ none 1.55 2.09 
VI SZ L2 SZ none 2.06 2.59 

VII DZP L2 none L2 0.34 0.89 
VIII DZ L2 none L2 0.37 0.93 
IX SZ L2 none L2 0.03 0.02 

X DZP L2 SZ L2 0.02 0.02 
XI DZ L2 SZ L2 0.02 0.02 
XII SZ L2 SZ L2 0.00 0.00 

XIII DZP L2 DZ L2 0.01 0.00 
XIV DZ L2 DZ L2 0.00 0.00 

X V DZP L2 none LI 0.14 0.90 
XVI DZ L2 none LI 0.22 0.95 
XVII SZ L2 none LI 0.12 0.09 

XVIII DZP L2 SZ LI 0.18 0.13 
XIX DZ L2 SZ LI 0.15 0.11 
X X SZ L2 SZ LI 0.17 0.12 

XXI DZP L2 DZ LI 0.19 0.12 
XXII DZ L2 DZ LI 0.16 0.11 

α Root mean square error in relative conformational energies. 
b Root mean square error in total energies. 

order. Unfortunately, errors in the total energy are sometimes positive, sometimes 
negative. This accounts for the larger rms AAE values. As w i l l be seen, this w i l l 
be a recurring theme: accurate relative energies require accurate total energies. 

Protocols I V to V I introduce orbital bases to the extended buffer. Protocols 
V I I to I X do the same with auxil iary bases. The quality of the bases in the 
extended buffer is the same as in the buffer. In other words, we are extending 
the buffer space over the entire molecule for either the orbital or auxil iary ba
sis. Add ing only orbital bases to the extended buffer does l i tt le to improve the 
situation. Relative energies are slightly better; total energies are slightly worse. 
Add ing only auxil iary bases to the extended buffer has a profound effect. Relative 
and total energies are greatly improved. We now have a clear distinction between 
SZ and D Z or D Z P bases. Protocol I X , using a SZ orbital basis, is clearly accept
able, wi th an rms AAE of 0.03 kcal m o l " 1 and an rms AE of 0.02 kcal m o l - 1 . 
The abil ity to use smaller buffers with SZ bases has been observed in previous 
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5. ST-AMANT Yang's Divide-and-Conquer DFT Approach 81 

D A C studies [3]. Unfortunately, SZ-quality results are not acceptable for the vast 
majority of applications. Protocols V I I and V I I I wi th D Z and D Z P bases are not 
quite accurate enough, with rms AAE values of over 0.3 kcal m o l - 1 . 

Keeping L2 auxil iary bases in the extended buffer, we investigate the effects 
of adding lower level orbital bases to the extended buffer. Protocols X to X I I use 
a S Z / L 2 extended buffer. Protocols X I I I and X I V use a D Z / L 2 extended buffer. 
We do not list results for S Z / L 2 calculations with a D Z / L 2 extended buffer as it 
would be pointless to have a protocol where extended buffer atoms have better 
bases than subsystem atoms. The simple addition of SZ bases to the extended 
buffer reduces errors dramatically. For protocols X and X I , the rms AAE and 
rms AE values are only 0.02 kcal m o l - 1 . The errors for protocol X I I are zero since 
we are performing D A C calculations using the ful l orbital and auxil iary bases in 
each subsystem. Raising the quality of the orbital basis in the extended buffer to 
D Z eliminates virtual ly al l errors. This type of accuracy is far more than required. 
We have clearly established the usefulness of extended buffer space, for a l l D A C 
approaches, not only our gaussian implementation. Taking D Z P calculations as an 
example, protocol V I I clearly establishes the need to somehow include a terminal 
methyl 's orbital basis in the opposing methyl 's buffer space. Protocol X shows, 
however, that there is no need to add the full D Z P basis (30 basis functions) 
to the opposing methyl 's buffer. The SZ basis (8 basis functions) suffices. We 
have managed to eliminate 22 orbital basis functions from each methyl subsystem 
calculation, wi th l i tt le loss of precision. 

Protocols X V to X X I I explore the possibility of using a lower quality, L I , 
auxil iary basis in the extended buffer. Protocols X V to X V I I do not add orbital 
bases to the extended buffer. Their rms AAE values are fortuitously better 
than those of protocols V I I to I X , where the superior L2 basis was used in the 
extended buffer. The rms AE values are relatively unaffected upon going from 
L2 to L I . Focussing only upon the SZ results, errors of about 0.1 kcal m o l - 1 

are introduced as we go from an L2 to an L I auxil iary basis in the extended 
buffer. Protocols X V I I I to X X I I are just protocols X to X I V wi th the auxil iary 
basis in the extended buffer dropped from L2 to L I . Since protocols X to X I V 
were, for a l l intents and purposes, exact, protocols X V I I I to X X I I are good tests 
of the effect of going down to an L I basis on buffer atoms beyond 5.3 Â. We 
see that acceptable rms AAE and rms AE values of 0.2 and 0.1 kcal m o l - 1 

are consistently introduced. Errors in relative energies are greater than those 
in total energies as D A C calculations neither systematically overestimate, nor 
underestimate, total energies. The extended buffer approach allows us to reduce 
the number of auxil iary basis functions on the opposing methyl from 73 to 19, 
almost a factor of four, while maintaining acceptable errors. To see the effect of 
not having any auxil iary basis functions on the opposing methyl , one need only 
look back at the totally unacceptable errors obtained within protocols I V to V I . 

Table II lists results of D A C calculations on the F O R - G L Y - G L Y - N H E (two 
glycine residues capped by formyl and amide groups) tripeptide. It was part i 
tioned into three subsystems, in one of two ways. In scheme A , the terminal 
peptide groups ( C O N H 2 ) form subsystems. The remaining interior atoms form 
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Table II. Test of D A C Protocols on F O R - G L Y - G L Y - N H E 

partitioning extended buffer errors in total energy 
orbital auxiliary (kcal mol *) 

A none L2 -1.14 -3.28 -1.68 +1.62 
Β -0.83 -0.86 -1.20 +0.94 

A SZ L2 -0.06 -0.28 -0.11 -0.37 
Β 0.00 -0.01 -0.05 -0.47 

A DZ L2 0.00 -0.01 -0.01 -0.08 
Β +0.01 0.00 0.00 -0.09 

A none LI -1.49 -5.67 -1.43 +2.19 
Β -0.77 -0.89 -1.16 +1.79 

A SZ LI -0.18 -2.94 +0.17 +0.82 
Β +0.06 -0.01 +0.01 +0.90 

A DZ LI -0.11 -2.65 +0.29 +1.09 
Β +0.06 -0.01 +0.06 +1.26 

Minimum distances between terminal subsystem atoms, partitioning A: 6.2, 3.8, 3.9 and 2.2 Â; 
partitioning B: 8.7, 5.6, 5.7 and 2.2 À. Subsystem atoms and buffer atoms have DZP/L2 bases. 

the th i rd . In scheme B , the terminal formyl and amide groups form subsystems, 
the remaining atoms again forming the th ird . In schemes A and B , both terminal 
subsystems are i n the buffer of the central subsystem and the central subsystem 
is i n the buffer of each terminal subsystem. The terminal subsystems are in each 
other's extended buffer. Four conformera were studied. The m i n i m u m distances 
between two atoms in separate terminal subsystems are 6.2, 3.8, 3.9, and 2.2 Â 
with in scheme A , and 8.7, 5.6, 5.7, and 2.2 Â within scheme B . Since D Z P / L 2 -
quality w i l l be required in future applications, these tests always use D Z P / L 2 
bases on subsystem and buffer atoms. Table II lists the indiv idual errors in total 
energies. The A D A results indicate that we must l imit these errors to 0.1 kcal 
m o l - 1 i f we are to achieve 0.2 kcal m o l " 1 accuracy i n relative energies. 

W i t h no orbital bases in the extended buffer, unacceptable errors arise, even at 
distances of 8.7 Â (-0.77 and -0.83 kcal m o l " 1 w i th the L I and L2 auxil iary bases). 
As in A D A , an S Z / L 1 extended buffer gives good results when the extended buffer 
begins 5.6 or 5.7 Â beyond the subsystem. A very bad error, -2.94 kcal m o l " 1 , 
arises i f we phase in an S Z / L 1 extended buffer at a distance of only 3.8 Â. Similar 
conclusions are drawn for the D Z / L 1 extended buffer. A n S Z / L 2 extended buffer 
is almost acceptable at a distance of 3.8 or 3.9 Â. The error wi th in scheme A for 
the second conformer, -0.28 kcal m o l " 1 , is perhaps a bit too high to tolerate. A 
D Z / L 2 extended buffer works well at distances as small as 2.2 Â. Results wi th a 
D Z / L 2 buffer phased in beyond 3.8 Â are essentially exact. 

Table III lists results of D A C calculations on the F O R - G L Y - G L Y - G L Y - N H E 
tetrapeptide. It is partitioned into three subsystems and its buffer and extended 
buffer is assigned in the same fashion as the tripeptide. Four conformera were 
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Table III. Test of D A C Protocols on F O R - G L Y - G L Y - G L Y - N H E 

partitioning extended buffer errors in total energy 
orbital auxiliary (kcal mol" 1) 

A none L2 -0.22 +4.91 -0.14 -1.02 
Β -0.15 -1.09 -0.19 -0.65 

A SZ L2 -0.01 -0.14 -0.01 -0.04 
Β 0.00 -0.06 -0.01 -0.01 

A DZ L2 0.00 +0.23 0.00 -0.01 
Β 0.00 +0.01 0.00 0.00 

A none LI -0.26 +2.69 -0.03 +0.48 
Β -0.18 -0.56 -0.16 -0.17 

A SZ LI -0.05 -1.64 +0.09 +1.40 
Β -0.03 +0.48 +0.03 +0.46 

A DZ LI -0.04 -1.27 -0.11 +1.43 
Β -0.04 +0.54 +0.03 +0.46 

Minimum distances between terminal subsystem atoms, partitioning A: 9.7, 2.3, 7.9 and 4.5 Â; 
partitioning B: 12.3, 2.3, 8.9, and 4.5 Â. Subsystem atoms and buffer atoms have DZP/L2 bases. 

studied. The m i n i m u m distances between atoms in separate terminal subsystems 
are 9.7, 2.3, 7.9, and 4.5 Â in scheme A , and 12.3, 2.3, 8.9, and 4.5 Â in scheme 
B . W i t h no orbital bases in the extended buffer, 0.2 kcal m o l " 1 errors s t i l l arise at 
distances as large as 9.7 or 12.3 Â. S Z / L 2 and D Z / L 2 extended buffers essentially 
provide exact results if phased in at 4.5 Â. A t 2.3 Â, the D Z / L 2 extended buffer 
generates a +0.23 kcal m o l " 1 error in the second conformer with in scheme A , sug
gesting we were somewhat lucky with the D Z / L 2 buffer at 2.2 Â in the tripeptide. 
Results wi th the S Z / L 1 and D Z / L 1 extended buffers strongly discourage using an 
L I basis in the extended buffer if phased in as close as 4.5 Â. The D Z / L 2 errors 
are essentially non-existent in the fourth conformer, but wi th the D Z / L 1 extended 
buffer, errors of +1.43 and +0.46 kcal m o l " 1 are observed. 

Our tests suggest that D Z orbital bases can be safely introduced to the ex
tended buffer at distances just under 3 Â. The orbital bases in the extended buffer 
can then be dropped to SZ at distances just over 4 Â. The distance at which we 
can eliminate orbital bases from the extended buffer is st i l l unclear. Tests show 
that doing this at 10 - 12 À almost meets our accuracy criterion. For the auxil iary 
bases, we can go to an L I basis in the extended buffer at 5 - 6 Â. Doing so under 
5 Â proved disasterous in certain instances. The A D A results showed that our 
results are far more sensitive to dropping auxiliary, rather than orbital , bases from 
the extended buffer. We can expect to go to at least 10 - 12 Â wi th the L I bases 
in the extended buffer. The distance at which we can stop adding auxil iary bases 
to the extended buffer is st i l l very much in question. 
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C o n c l u s i o n 

The spatial extent of buffer space is disappointingly large. Clearly, the D A C 
approach wi l l not be more efficient for systems as small as our test peptides. 
Fortunately, the use of an extended buffer space helps us dramatically reduce 
the number of basis functions in a subystem calculation. The extended buffer 
approach should prove to be very useful in any future D A C D F T program. The 
sensitivity of our results to dropping auxil iary bases from the extended buffer 
suggests that the D A C approach is better suited to D F T formalisms that do 
not fit p(r) and vxc(r) [4]. Future work may alleviate this problem. We must 
first establish whether this sensitivity can be attributed to either the fit of p(r) 
or vxc(r). If the fit of p(r) is the source of our problems, readjustments of the 
positions and weights of grid points used to fit pa(r), equation (31), might help. 
If the fit of vxc(r) is at fault, redefining the partitioning function, pa(r), i n equation 
(33), further localizing a subsystem's contribution to vxc(r), w i l l help. 
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Chapter 6 

Direct Ab Initio Dynamics Methods 
for Calculating Thermal Rates 

of Polyatomic Reactions 

Thanh N. Truong, Wendell T. Duncan, and Robert L. Bell 

Department of Chemistry, University of Utah, Salt Lake City, UT 84112 

W e present a direct ab initio d y n a m i c s m e t h o d o l o g y for 
ca l cu lat ing thermal rate constants f r o m dens i ty funct iona l theory 
(DFT) . D y n a m i c a l theory is based o n a var ia t i ona l t rans i t i on state 
theory p l u s m u l t i - d i m e n s i o n a l semi -c lass i ca l t u n n e l i n g 
approx imat ions . Potent ia l energy surface i n f o r m a t i o n is 
ca lculated f r o m a c o m b i n e d DFT/ab initio M o l e c u l a r O r b i t a l 
theory approach . W e also present appl i cat ions of this m e t h o d to 
p red i c t ing detai led dynamics of a h y d r o g e n abstraction react ion 
a n d p r o t o n transfer in a m o d e l b io log i ca l system to i l lustrate its 
vers i l i ty , accuracy a n d prospects for molecu lar m o d e l i n g of 
reactive d y n a m i c s of po lyatomic chemica l reactions. 

I. I N T R O D U C T I O N 

The p r e d i c t i o n of react ion rates f r om first pr inc ip les a l l ows one to 
m a k e direct compar isons between theory a n d exper iment a n d hence to 
deduce react ion mechanisms o n the molecu lar l eve l . For this reason, it 
has been a major goal of theoretical chemistry . H o w e v e r , it also has been a 
chal lenge par t i cu lar ly for po lya tomic reactions for the f o l l o w i n g reasons. 
The convent i ona l approach of reactive d y n a m i c a l ca lculat ions u s i n g either 
the f u l l quanta l d y n a m i c s , classical or semiclassical trajectory m e t h o d , or 
v a r i a t i o n a l t rans i t i on state theory (VTST) requires the a v a i l a b i l i t y of an 
accurate analyt i ca l potent ia l energy funct ion ( P E F ) . 1 " 3 D e v e l o p i n g such a 
potent ia l energy funct ion is not a t r i v i a l task a n d is a major obstacle for the 

0097-6156/96/0629-0085$15.00/0 
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86 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

d y n a m i c a l s tudy of a new reaction despite the steady i m p r o v e m e n t i n 
computer speed. T h i s is because; i) the expl i c i t funct ional f o r m for a 
potent ia l energy funct ion is somewhat arbi trary a n d mos t ly depends o n the 
invest igator ' s i n t u i t i o n , i i ) f i t t ing this funct iona l f o r m to a set of ab initio 
energy points a n d any avai lable exper imenta l data is tedious a n d yet does 
not guarantee convergence or correct g lobal topo logy , i i i ) the n u m b e r of 
energy po ints needed g rows geometr ica l ly w i t h the n u m b e r of geometr ica l 
in terna l coordinates. A s the system size increases, this task becomes m u c h 
m o r e complex i f it can s t i l l be accompl i shed at a l l . T h u s , deve lopments of 
n e w methodo log ies for s t u d y i n g d y n a m i c s , kinetics a n d mechanisms of 
large po lya tomic reactions are of great interest. 

D irec t d y n a m i c s m e t h o d s , 3 " 4 1 i n c l u d i n g those be ing d e v e l o p e d i n 
our l a b 5 ' 1 2 ' 3 4 " 3 7 offer a v iab le alternative for s t u d y i n g chemica l reactions of 
complex systems. In the direct dynamics approach , a l l r equ i red energies 
a n d forces for each geometry that is impor tant for eva lua t ing d y n a m i c a l 
propert ies are obta ined direct ly f r o m electronic structure calculat ions 
rather t h a n f r o m e m p i r i c a l analyt i ca l force f ields. O u r earl ier contr ibut ions 
to this area i n c l u d e the deve lopment of t w o different methodo log ies for 
ca l cu lat ing thermal rate constants a n d related properties. O n e approach is 
to estimate t h e r m a l rate constants a n d t u n n e l i n g contr ibut ions u s i n g the 
in terpo la ted V a r i a t i o n a l T r a n s i t i o n State T h e o r y (VTST) w h i c h has 
p r o v e n use fu l w h e n avai lable accurate ab initio e lectronic s tructure 
i n f o r m a t i o n is l i m i t e d . 1 6 The other approach is to use a s e m i e m p i r i c a l 
mo le cu lar o rb i ta l H a m i l t o n i a n at the Neglect of D i a t o m i c Di f ferent ia l 
O v e r l a p ( N D D O ) leve l as a f i t t ing funct ion i n w h i c h parameters have been 
readjusted to accurately represent ac t ivat ion b a r r i e r s . 1 7 F u l l V T S T 
c a l c u l a t i o n s w i t h m u l t i d i m e n s i o n a l semic lass i ca l t u n n e l i n g 
a p p r o x i m a t i o n s then can be carr ied out u s i n g this N D D O H a m i l t o n i a n 
w i t h specific react ion parameters. B o t h of these approaches have been 
successful ly a p p l i e d to var i ous chemica l r e a c t i o n s . 1 6 ' 1 7 - 2 3 ' 2 4 ' 2 6 ' 3 2 ' 3 9 ' 4 2 ' 4 3 

H o w e v e r , m a n y di f f icult ies persist. For instance, i n the former 
interpo lated V T S T approach , it is d i f f i cul t to correlate v i b r a t i o n a l modes i n 
the t rans i t i on state reg ion to reactant a n d p r o d u c t asymptotes w h e n m o d e 
crossings occur as they often do. In the later, it m a y prove to be d i f f i cu l t to 
adjust the o r i g i n a l N D D O parameters to accurately describe the t rans i t i on 
state reg ion if the o r i g ina l N D D O potent ia l energy surface differs 
s ign i f i cant ly f r o m the reference accurate ab initio surface. Recent 
d e v e l o p m e n t i n c o m b i n i n g bo th a p p r o a c h e s 2 2 ' 4 1 has some promise . 

In this chapter, w e w i l l focus on ly o n our recent contr ibut ions to the 
d e v e l o p m e n t of direct ab initio d y n a m i c s methods i n w h i c h no 
exper imenta l data other than p h y s i c a l constants were used for ca l cu lat ing 
t h e r m a l rate constants of gas-phase po lya tomic reactions. The d y n a m i c a l 
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6. TRUONG ET AL. Direct Ab Initio Dynamics Methods 87 

m e t h o d is based o n f u l l V T S T theory p l u s m u l t i - d i m e n s i o n a l semic lass i ca l 
t u n n e l i n g corrections. The m a i n difference w i t h our p r e v i o u s w o r k , 
h o w e v e r , is i n the w a y the potent ia l energy surface i n f o r m a t i o n is 
obta ined . I n our new approach , des ired quantit ies are obta ined d irec t ly 
f r o m ab initio e lectronic structure ca lculat ions , thus n o f i t t ing is i n v o l v e d . 
For quant i tat ive predic t ions of k inet ic propert ies , the potent ia l energy 
surface m u s t be adequately accurate. If such i n f o r m a t i o n is to be calculated 
f r o m a suf f ic ient ly accurate leve l of ab initio mo le cu lar o rb i ta l theory , the 
c omputat i ona l d e m a n d can be substantial . In this case, these methods are 
o n l y use fu l for s m a l l systems, a n d thus they stop short of our goal . T o 
al leviate this d i f f i cu l ty , we have i n t r o d u c e d t w o n e w methodo log ies w h i c h 
can be used i n combinat ion . O n e is a focus ing technique or a n adapt ive 
g r i d m e t h o d i n w h i c h more computat i ona l resources are spent o n regions 
that are most sensit ive to the d y n a m i c s a n d less resources e lsewhere. T h i s 
a l l o w s one to ob ta in an o p t i m a l accuracy w i t h a m i n i m u m c o m p u t a t i o n a l 
cost at a g i v e n leve l of theory. The other is the use of a c o m p u t a t i o n a l l y 
less d e m a n d i n g electronic structure m e t h o d , densi ty func t i ona l theory 
(DFT) , for the c omputa t i ona l l y most expensive step i n o b t a i n i n g the 
potent ia l energy i n f o r m a t i o n requ i red for rate calculat ions. The later raises 
a n interest ing a n d i m p o r t a n t quest ion. W o u l d D F T methods be 
suf f ic iently accurate for this purpose? 

R a p i d deve lopments i n new funct ionals have s ign i f i cant ly 
i m p r o v e d the accuracy of D F T methods i n the past few years. P r e v i o u s l y , 
most appl icat ions of D F T were for pred i c t ing propert ies of stable 
e q u i l i b r i u m s t r u c t u r e s . 4 4 " 4 6 Recently , more s t u d i e s 4 7 ' 5 3 o n the accuracy of 
D F T methods for t rans i t ion state propert ies have been reported . A general 
c onc lus i on is that for t rans i t ion state propert ies the non - l o ca l D F T a n d the 
h y b r i d D F T methods i n w h i c h a por t i on of Hartree -Fock exchange is 
i n c l u d e d y i e l d results of comparable accuracy to the second-order M o l l e r -
Plesset (MP2) m e t h o d but at a m u c h cheaper computat i ona l cost, 
par t i cu lary for large systems. T h u s , the computat i ona l advantage of D F T 
w o u l d a l l o w app l i ca t i on of the direct ab initio d y n a m i c s m e t h o d to 
s t u d y i n g reactions i n v o l v i n g larger p o l y a t o m i c molecules . 

T o i l lustrate the app l i cab i l i ty , accuracy a n d versat i l i ty of this direct ab 
initio d y n a m i c s approach , w e present t w o different appl i cat ions . O n e is the 
h y d r o g e n abstract ion C H 4 + H <—> C H 3 + H2 reaction. T h i s react ion has 
served as a prototype react ion i n v o l v i n g po lya tomic molecules a n d has 
p l a y e d a n i m p o r t a n t role i n the theoretical a n d exper imenta l 
deve lopments of chemica l kinet ics . In a d d i t i o n , it has a n intr ins i c 
impor tance to c o m b u s t i o n kinet ics a n d is of f u n d a m e n t a l interest to 
organic react ion mechanisms . For this reason, a m p l e exper imenta l rate 
data is avai lable for compar ison . A l s o this reaction is s m a l l e n o u g h so that 
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accurate ab initio M O calculations can also be per formed to test the accuracy 
of D F T methods . The second example is the p r o t o n transfer i n 
f o r m a m i d i n e - w a t e r c omplex w h i c h has i m p o r t a n t i m p l i c a t i o n s i n 
b io log i ca l processes. D u e to the l i m i t t e d space, w e can o n l y focus o n the 
accuracy of the methodo logy a n d not so m u c h o n the chemistry of these 
reactions. W e refer readers to our o r i g i n a l p a p e r s 5 ' 3 4 ' 3 5 for such d iscuss ion . 

II. T H E O R Y 

A . Variational transition state theory 

V a r i a t i o n a l t rans i t i on state theory a n d m u l t i d i m e n s i o n a l 
semic lass ica l t u n n e l i n g methods have been descr ibed i n de ta i l 
e l s e w h e r e . 5 4 ' 6 0 In this chapter, w e o n l y capture the essence of the theory 
a n d the a p p r o x i m a t i o n s i n v o l v e d i n the appl i cat ions presented here. 
V T S T is based o n the idea that by v a r y i n g the d i v i d i n g surface a l ong the 
m i n i m u m energy p a t h ( M E P ) to m i n i m i z e the rate, one can m i n i m i z e the 
error due to "recrossing" trajectories. The M E P is de f ined as the steepest 
descent p a t h f r o m the saddle po int to both the reactant a n d produc t 
d irect ions i n the mass -we ighted cartesian coordinate system. The react ion 
coordinate s is then def ined as the distance a long the M E P w i t h the o r i g i n 
located at the saddle po int a n d is posi t ive o n the product s ide a n d negative 
o n the reactant side. For a canonical ensemble at a g i v e n temperature T, 
the canonica l v a r i a t i o n a l theory ( C V T ) rate constant for a b i m o l e c u l a r 
react ion is g i v e n b y 

kcvr(T) = m i n kGT(T,s) (1) 
s 

w h e r e 

kGT(j,s) = ^ . Q G T ^ T ^ e - p w ) ( 2 ) 

fih Φ * ( Γ ) 

In these equations, k G T ( T , s ) is the general ized trans i t ion state theory rate 
constant at the d i v i d i n g surface w h i c h intersects the M E P at s a n d is 
o r thogona l to the M E P at the intersection point , σ is the s y m m e t r y factor 
account ing for the poss ib i l i ty of more than one symmetry - re la ted react ion 
p a t h a n d can be calculated as the rat io of the product of the reactant 
rotat ional s y m m e t r y numbers to the t rans i t i on state one. For example , the 
rotat ional s y m m e t r y numbers for C H 4 (Ta), C H 3 (D3h), H 2 (Dooh) a n d the 
H 3 C . H . . H general ized trans i t ion state (C3 V ) are 12, 6, 2 a n d 3, respectively. 
C o n s e q u e n t l y , σ equals 4 for both the f o r w a r d a n d reverse direct ions of the 
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6. TRUONG ET AL. Direct Ab Initio Dynamics Methods 89 

C H 4 + H <-> C H 3 + H2 reaction, β is (koT) ' 1 where k B is Bo l t zman ' s 
constant a n d h is P lanck 's constant. Φ Κ ( Τ ) is the reactant p a r t i t i o n 
f u n c t i o n (per un i t v o l u m e for b imo lecu lar reactions). V M E P ( s ) is the 
c lassical potent ia l energy (also ca l led the B o r n - O p p e n h e i m e r potential ) 
a l ong the M E P w i t h its zero of energy at the reactants, a n d Q G T ( T , s ) is the 
in terna l p a r t i t i o n func t i on of the genera l ized t rans i t i on state at s w i t h the 
loca l zero of energy at V M E P ( s ) . Both Φ Κ ( Τ ) a n d Q G T ( T , s ) p a r t i t i o n 
funct ions are a p p r o x i m a t e d as products of electronic, v i b r a t i o n a l a n d 
ro tat iona l p a r t i t i o n funct ions. For the electronic p a r t i t i o n func t i on , the 
genera l i zed t rans i t i on state electronic exc i tat ion energies a n d degeneracies 
are assumed to be the same as at the trans i t ion state. For rotat ions, since 
the rotat ional energy levels are general ly closely spaced, r ep lac ing the 
quanta l rotat ional par t i t i on functions b y the classical ones y ie lds v e r y l itt le 
loss i n accuracy. For v ibrat ions , i n the present s tudy , the p a r t i t i o n 
funct ions are ca lculated q u a n t u m mechan i ca l l y w i t h i n the f r a m e w o r k of 
the h a r m o n i c a p p r o x i m a t i o n . N o t e that a n h a r m o n i c i t y somet imes can 
have a noticeable effect o n reaction rates par t i cu lar ly at h igher 
temperatures . H o w e v e r , it is not i n c l u d e d i n the appl i cat ions presented 
b e l o w . 

The canonica l var ia t i ona l t rans i t ion state theory descr ibed above 
y ie lds the h y b r i d (i.e. c lassical reaction p a t h m o t i o n w i t h v i b r a t i o n a l 
degrees of f reedom quant ized) rate constants. Fur thermore , i f the 
general ized trans i t ion state is located at the saddle po int (s=0), eq. (2) 
reduces to convent iona l t rans i t ion state theory. 

T o inc lude quanta l effects for m o t i o n a l ong the react ion coordinate , 
w e m u l t i p l y the C V T rate constants by a t ransmiss ion coefficient, κ (Τ). 
T h u s , the f ina l quant i zed rate constant is 

B . M u l t i d i m e n s i o n a l S e m i c l a s s i c a l T u n n e l i n g M e t h o d s 

T o calculate the t ransmiss ion coefficient, w e first approx imate the 
effective potent ia l for t u n n e l i n g to be the v ib ra t i ona l l y adiabatic g r o u n d -
state potent ia l curve def ined by 

k(T) = κ CVT/G (T)k CVT (T) (3) 

(4) 

w h e r e €?t(s) denotes the zero -po int energy i n v i b r a t i o n a l modes 
tranverse to the M E P . The g r o u n d state t ransmiss ion coefficient, 
K C V T / G ( x ^ i s then approx imated as the ratio of the thermal ly averaged 
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90 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

m u l t i d i m e n t i o n a l semic lass ica l ground-state t r a n s m i s s i o n p r o b a b i l i t y , 
P G ( E ) , for reaction i n the g r o u n d state to the thermal ly averaged classical 
t r a n s m i s s i o n probab i l i t y for one -d imens iona l scattering b y the g r o u n d -
state effective potent ia l V f O ) . 2 4 ' 5 6 " 6 5 If w e denote the C V T t rans i t i on 
state for temperature Τ as sGvr{T), the va lue of VG[sGvr(T)]f denoted as 
E*(T), is the quasic lassical ground-state thresho ld energy, then the 
t ransmiss i on coefficient κ ^ ν τ / G ( T ) can be expressed as 

\PG(E)e AbTdE 

KCVr,G(T) = ^ - — . (5) 

\e /kbTdE 
E.(T) 

The semiclassical t ransmiss ion probab i l i ty P G ( E ) accounts for bo th 
nonc lass ica l ref lect ion at energies above the quasic lassical thresho ld a n d 
also nonc lass ica l t ransmiss ion , i.e., t u n n e l i n g , at energies be l ow that 
thresho ld . H o w e v e r , the B o l t z m a n n factor i n E q . (5) makes t u n n e l i n g the 
far m o r e i m p o r t a n t contr ibut i on . 

Severa l a p p r o x i m a t i o n s for the semic lass ica l t r a n s m i s s i o n 
p r o b a b i l i t y P G ( E ) are avai lable , however , o n l y two , name ly , the zero -
c u r v a t u r e 5 8 a n d the cent r i fuga l -dominant s m a l l - c u r v a t u r e semic lass i ca l 
adiabat ic g r o u n d - s t a t e 6 5 approx imat ions used i n the present s tudy are 
presented here. For convenience, we label them as Z C T a n d S C T for the 
zero - curvature t u n n e l i n g a n d s m a l l - c u r v a t u r e t u n n e l i n g cases, 
respect ively . Since the Z C T a p p r o x i m a t i o n is a special case of the S C T 
a p p r o x i m a t i o n , w e present o n l y the f o r m a l i s m for the S C T be low. 

The S C T used here is a general izat ion of the M a r c u s - C o l t r i n 
a p p r o x i m a t i o n i n w h i c h the t u n n e l i n g p a t h is d is tor ted f r o m the M E P out 
to the concave-side v i b r a t i o n a l t u r n i n g po int i n the d i rec t i on of the 
i n t e r n a l centr i fugal force. Th i s p h e n o m e n o n is c o m m o n l y refered to as 
"corner cutt ing" . Instead of de f in ing the t u n n e l i n g p a t h exp l i c i t l y , the 
centr i fugal effect is i n c l u d e d by rep lac ing the reduced mass by an effective 
reduced mass, M eff(s), w h i c h is used to evaluate i m a g i n a r y act ion integrals 
a n d thereby t u n n e l i n g probabi l i t ies . N o t e that i n the mass -we ighted 
cartesian coordinate system, the reduced mass μ is set equal to 1 a m u . The 
ground-state t ransmiss ion probab i l i ty at energy Ε is 
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6. T R U O N G E T A L . Direct Ab Initio Dynamics Methods 91 

PG(E)= 
{\ + e-2(KE)} 

(6) 

w h e r e Θ(Ε) is the i m a g i n a r y act ion integra l eva luated a l ong the t u n n e l i n g 
p a t h , 

Θ(Ε) = *?£ ^ejr(s)\E-VÏ(s)\ ds 

a n d w h e r e the integrat ion l i m i t s , s\ a n d s r , are the react ion-coordinate 
t u r n i n g points de f ined by 

VG
a[Sl{E)]=VG

a[sr{E)} = E 

(7) 

(8) 

N o t e that the Z C T results can be obtained b y setting μ eff(s) equal to μ i n E q . 
(7). The effect of the react ion-path curvature is i n c l u d e d i n the effective 
r educed mass \XQH{S) w h i c h is g i v e n by 

μ ^ 0 ) = μ χ min < e x p { - 2 « ( 5 ) - [ « ( S ) ] 2 + ( % ) 2 } 

1 

w h e r e 

â{s) = \K{s)t{s)\ 

The m a g n i t u d e of the react ion-path curvature κ (s) is g i v e n b y 

(9) 

(10) 

K(s) = 
Î3N-7 \]/2 

Σ Κω]2 

V. m=l 

(11) 

w h e r e the s u m m a t i o n is over a l l 3 N - 7 genera l i zed n o r m a l modes a n d 
Km (s) is the react ion-path curvature component a l ong m o d e m g i v e n 

b y 6 6 

Km(s) = -LT
mF-

|vv| 2 

(12) 

a n d where L m is the transpose of the general ized n o r m a l m o d e 
eigenvector of m o d e m , F is the force constant matr ix (Hess ian matr ix ) , 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
00

6

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



92 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

V V is the gradient . F i n a l l y , t(s) is the m a x i m u m concave-s ide v i b r a t i o n a l 
d i sp lacement a long the curvature d i rec t i on for w h i c h there is no 
t u n n e l i n g i n the v i b r a t i o n a l coordinates . W i t h i n the h a r m o n i c 
a p p r o x i m a t i o n , t(s) is g i ven by 

t(s) = f \ \ Σ [ * Μ ] * 2 Μ <13> 

where w m is the general ized v ibrat iona l frequency of m o d e m . 

A s descr ibed above, i n order to carry out fu l l V T S T calculat ions a n d 
m u l t i - d i m e n s i o n a l semic lass i ca l z e ro - or s m a l l - c u r v a t u r e t u n n e l i n g 
corrections, geometries, energies, gradients a n d Hess ians are needed at the 
stat ionary points a n d a long the M E P . H e s s i a n calculations a l ong the M E P 
are c o m p u t a t i o n a l l y the most expensive step. Be low w e describe t w o 
dif ferent methodo log ies for m i n i m i z i n g the c omputa t i ona l cost of this 
step. 

C . F o c u s i n g t e chn ique 

The focus ing technique was deve loped to assure the convergence of 
the ca lculated rate constants w i t h a m i n i m a l n u m b e r of Hess ians r equ i red . 
T h i s m e t h o d invo lves t w o separate steps. F irs t , a p r e l i m i n a r y rate 
ca l cu lat ion w i t h a coarse H e s s i a n g r i d is carr ied out to estimate regions 
c o n t a i n i n g the temperature-dependent canonica l t rans i t i on states or those 
h a v i n g large curvature where the "corner cut t ing" effect w o u l d be large. A 
f iner H e s s i a n g r i d is then used for these regions to i m p r o v e the accuracy of 
the calculated C V T rate constants a n d the S C T t u n n e l i n g probab i l i ty . The 
technique w i l l be i l lustrated i n more detai l be l ow . 

D . E m p l o y i n g D F T methods 

N o n - l o c a l D F T methods such as the c o m b i n a t i o n of Becke's H a l f -
a n d - H a l f 6 7 ( B H & H ) or three p a r a m e t e r 6 8 (B3) h y b r i d exchange w i t h L e e -
Y a n g - P a r r 6 9 ( L Y P ) correlat ion functionals can be used to calculate the 
geometries a n d Hess ians a long the M E P . The h y b r i d B H & H funct ional as 
i m p l e m e n t e d i n the G 9 2 / D F T p r o g r a m 7 0 consists of 50% Hartree -Fock a n d 
5 0 % Slater exchange contr ibut ion . The D F T energies, however , are not 
a lways suff ic iently accurate. In this case, to obta in more a accurate 
potent ia l energy a long the M E P , one can either per form a series of s ingle 
po int calculat ions at a more accurate level of theory w i t h a larger basis set 
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6. T R U O N G E T A L . Direct Ab Initio Dynamics Methods 93 

for selected points a long the M E P or scale VMEP(S) by a constant factor to 
m a t c h a more accurately calculated classical barr ier a n d react ion energy. 

F r o m o u r experience, w e have f o u n d that the B 3 L Y P m e t h o d is 
s l i ght ly more accurate than the B H & H L Y P m e t h o d for ca l cu lat ing 
e q u i l i b r i u m structures. For f i n d i n g trans i t ion state structures , the 
B H & H L Y P m e t h o d has s h o w n to be more rel iable for open-she l l sytems. 
F o r c losed-shel l systems, our p r e l i m i n a r y results indicate that b o t h B 3 L Y P 
a n d B H & H L Y P are adequate. In practice, w e often carry out accurate ab 
initio M O calculat ions at the stationary points to check the accuracy of D F T 
methods p r i o r to their use i n rate calculat ions. 

III. A P P L I C A T I O N S 

A . C H 4 + H <—> C H 3 + H 2 react ion 

W e used this react ion as a test case where the react ion va l l ey 
(geometries, energies, gradients a n d Hess ians a long the M E P ) was 
ca lculated w i t h bo th the Q u a d r a t i c C o n f i g u r a t i o n Interact ion i n c l u d i n g a l l 
S ingle a n d D o u b l e excitations (QCISD) a n d the h y b r i d B H & H L Y P methods . 
B o t h methods use the same 6-311G(d,p) basis set. In part i cu lar , w e have 
p e r f o r m e d a n e w benchmark converged direct ab initio d y n a m i c s rate 
calculat ions for this reaction. In the new calculat ions , the react ion p a t h 
was calucated at the Q C I S D / 6 - 3 1 1 G ( d , p ) w i t h the step size of 0.01 
a m u 1 / 2 b o h r w h i c h is a n order of magn i tude smal ler than i n our prev ious 
s t u d y . 3 4 H e s s i a n gr ids are also m u c h finer. Fur thermore , instead of sca l ing 
the potent ia l energy a long the M E P as i n the prev ious s tudy , s ingle po int 
PMP4 /6 -311+G(2d f , 2pd ) calculations were per formed at the H e s s i a n gr ids . 

React ion energies a n d barr ier heights are l i s ted i n Table 1. The 
B H & H - L Y P classical barriers were f ound to be too l o w by 2.7 a n d 0.6 
k c a l / m o l for the f o r w a r d a n d reverse reactions, respect ively , as c ompared 
to the C C S D ( T ) / c c - p V Q Z results. S ing le -po int s p i n projected fourth-order 
Mo l l e r -P lesse t per turbat ion theory ( P M P 4 ) calculations w i t h the larger 6-
311+G(2df,2pd) basis set at the B H & H - L Y P / 6 - 3 1 1 G ( d , p ) geometries b r i n g the 
differences i n the classical barriers to less than 0.7 k c a l / m o l a n d also y i e l d 
the react ion entha lpy at 0 Κ to be -0.36 k c a l / m o l as c ompared to the 
C C S D ( T ) / c c - p V Q Z value of -0.3 k c a l / m o l a n d the exper imenta l va lue f r o m 
J A N A F t a b l e s 7 4 of -0.02 k c a l / m o l . 
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Table 1: Heat of reaction a n d barrier he ights 3 ( k c a l / m o l ) for the C H 4 + H 
<--> CH3 4-H2 react ion 

L e v e l ΔΕ Δ / / 0 ° 

B H & H L Y P / 6-31 l G ( d , d p ) 1.4 -1.9 12.6 
( e l l . l ) * 

11.2 (13.0) a 

PMP4/6-311+G(2df,2pd) 
/ / B H & H L Y P / 6 - 3 1 1 G ( d , p ) 2.9 -0.4 14.6 (13.1) 11.7 (13.5) 

QCISD /6 -311G(d,p) 2.5 -0.7 16.3 (14.8) 13.8 (15.5) 

PMP4/6-311+G(2df ,2pd) 
/ / Q C I S D / 6 - 3 1 1 G ( d , p ) 3.6 0.3 14.6 (13.0) 10.9 (12.7) 

C C S D ( T ) / c c - p V Q Z 
/ / C C S D ( T ) / c c - V Q Z b 

3.5 -0.3 15.3 (13.1) 11.8 (13.3) 

J3 C 2.8 -0.02 12.9 (11.8) 10.1 (11.9) 

E x p t . d 2.6 d - 1 .3 d 

-0.02e 
(13.3 ± 0.5) d (14.6 ± 0.4) d 

a Zero-point energy corrected barriers are given in the parentheses. 
b F r o m Ref. 71. 
c From Ref. 72. 
d From Ref. 73. 
e From Ref. 74. 

S i m i l a r results were obta ined i f the Q C I S D geometries were used i n the 
P M P 4 calculat ions except the calculated reaction entha lpy is s l i ght ly 
pos i t ive . U s i n g the B H & H - L Y P zero -po int energy correct ion, the 
P M P 4 / / B H & H - L Y P zero-point energy corrected barriers for bo th f o r w a r d 
a n d reverse reactions are w i t h i n 0.2 k c a l / m o l of the C C S D ( T ) / c c - p V Q Z 
va lues a n d are also i n good agreement w i t h exper imenta l d a t a . 7 3 
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2.2 M I 11 j 11 11 j 1 1 1 1 ; I M I ( f ι 1 1 1 1 1 1 1 1 1 1 0 

0.6 * ' 1 " * ' ' ' ' 1 1 ' ' ' 1 ' ' 1 1 1 1 1 ' ' 1 ' ' ' 1 ' go 
-1.5 - 1 -0.5 0 0.5 1 1.5 

s (amu 1 / 2 bohr) 

Figure 1: BH&HLYP (solid lines) and QCISD 
(dased lines) geometrical parameters along 
the MEP of the H + CH —>H +CH reaction 

4 2 3 
vs the reaction coordinate s. 

16 

Vc-DFT 
Vc-QCISD 

— VC-PMP4//QCISD -I 
- VC-PMP4//DFT 
' ' • 1 • 1 • • 1 • 1 " • • 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

s (amu 1 / 2 bohr) 

Figure 2: Classical potential energy curves { PMP4// 
QCISD (solid), PMP4//BH&HLYP (dashed), scaled 
BH&HLYP (dashed-dotted), scaled QCISD (dotted)}. 

The geometries a l o n g 
the m i n i m u m energy p a t h 
calculated b y b o t h the B H & H 
L Y P a n d Q C I S D levels are 
s h o w n i n F i g u r e 1. W e 
f o u n d that the B H & H - L Y P 
m e t h o d y ie lds the active C -
H a a n d H a - H b o n d lengths 
a n d H - C - H a angle as 
funct ions of the react ion 
coordinate i n excel lent 
agreement w i t h the Q C I S D 
results. M o r e speci f ical ly , 
F igure 1 shows a n 
unnot iceable dif ference i n 
the active b o n d lengths a n d a 
difference of less than 1 
degree i n the H - C - H a angle 
between the t w o methods . 

The g o o d agreement 
between P M P 4 / / Q C I S D a n d 
P M P 4 / / B H & H L Y P potent ia l 
curves as s h o w n i n F i g . 2 
indicates that the accuracy of 
the potent ia l energy a l o n g the 
M E P can be i m p r o v e d b y 
c a r r y i n g out s ingle po int 
PMP4/6-311+G(2df ,2pd) 
calculat ions at selected po ints 
a l ong the D F T M E P . W h e n 
such s ingle po in t ca lculat ions 
o n the H e s s i a n gr ids are 
c o m p u t a t i o n a l l y expens ive , i t 
is possible to scale the 
potent ia l energy a l ong the 
M E P b y a constant factor to 
adjust the barr ier he ight to 
more accurate ca lculat ions . 
A s s h o w n i n F i g . 2, w e scaled 
the B H & H L Y P a n d Q C I S D 
potent ia l curves to best 
reproduce bo th the f o r w a r d 
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4~*5000 111 ι ι ; 11 11 ι ι ι 111 ι ι ι 1111 ι ι 11 I I I 
Έ : : 
ο 

s (amu 1 / 2 bohr) 

Figure 3: BH&HLYP (solid lines) and QCISD 
(dashed lines) harmonic frequencies along the 
reaction coordinate s. 

- 9 η!• •• .ι. , . . ι . . . .ι. . . . ι . .. ,ι. . . . 
0.5 1 1.5 2 2.5 3 3.5 

1000/Τ (Κ) 
Figure 4: Arrhenius plot for the forward H + CH^ 

reaction. Symbols are experimental data. Lines 
are the C V T / S C T results {PMP4//QCISD (solid), 
PMP4//BH&HLYP (dashed), scaled BH&HLYP 
(dotted), scaled QCISD (dashed-dotted)}. 

a n d reverse classical barriers 
calculated at the C C S D ( T ) / c c -
p V Q Z leve l of theory b y 
K r a k a et a l . 7 1 N o t e that bo th 
the scaled D F T a n d Q C I S D 
classical potent ia l curves 
have about the same w i d t h 
compared to the 
P M P 4 / / Q C I S D curves, 
t h o u g h the barr ier heights 
differ by about 1 k c a l / m o l . In 
general , s ca l ing the react ion 
prof i le b y a constant to obta in 
more accurate barr ier heights 
does not guarantee to 
i m p r o v e the shape as w e l l as 
the asymtot ic regions of the 
reaction prof i le . It is 
possible , however , to a d d a 
s m a l l n u m b e r of s ingle p o i n t 
calculations as discussed 
above a n d to interpolate the 
energy corrections a long the 
M E P . S u c h a procedure is 
n o w be ing tested i n our lab. 

G e n e r a l i z e d 
frequencies calculated at the 
B H & H - L Y P / 6 - 3 1 1 G ( d , p ) level 
versus the react ion coordinate 
are p lotted i n F igure 3 a long 
w i t h the prev ious Q C I S D / 6 -
311G(d,p) results. Note that 
excellent agreement was 
f o u n d between the B H & H 
L Y P a n d Q C I S D results, 
t h o u g h the former are s l i g h t l y 
larger by about 3%. 

The A h r r e n i u s p lots of 
the calculated a n d 
exper imenta l f o r w a r d a n d 
reverse rate constants are 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
00

6

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



6. TRUONG ET AL. Direct Ab Initio Dynamics Methods 97 

- 1 2 

- 1 3 

- 1 4 -
3 O Q) 
O 
E 

^ - 1 7 

- 1 5 -

- 1 6 

1 8 

o 3 - 1 9 r 
•20 

J I M I 1 1 1 1 I 1 1 1 1 | ï I I τ ι 111 ι ι 1 1 1 1. E 1 | ï I I τ ι 111 ι ι 1 1 1 1. 

\ 
- -
- --

; \ J 

=-

î 

j 

• Ζ 
H.j.11 11 1111 1111 11 Γι r 

0.5 1 3.5 

+ H 
3 2 

reaction. 

s h o w n i n F igures 4 a n d 5, 
respectively . N o t e that 
our C V T / S C T -
P M P 4 / / B H & H - L Y P results 
for the f o r w a r d rate 
constants are i n excellent 
agreement w i t h the 
exper imenta l data for the 
temperature range f r o m 
300-1500 Κ w i t h the largest 
d e v i a t i o n factor of 1.5 
c o m p a r e d to the recent 
r e c o m m e n d e d 
e x p e r i m e n t a l v a l u e s . 7 5 

S i m i l a r results were 
f o u n d for the 
P M P 4 / / Q C I S D 
calculat ions . The 
d e v i a t i o n factor is s l i ght ly 
larger for the reverse rate 
constants f r o m b o t h the 
P M P 4 / / Q C I S D and 

P M P 4 / / B H & H L Y P calculations, part i cu lar ly rang ing f r o m 2.5-3.0 for the 
temperature range f r om 300-1500 K . Rate constants calculated f r o m the 
scaled B H & H L Y P a n d Q C I S D potential are also i n reasonably good 
agreement w i t h the exper imenta l data. 

The above results s h o w that we can use computat i ona l ly less 
d e m a n d i n g D F T methods to p r o v i d e geometries a n d Hess ians a l ong the 
M E P . D F T energies may not be sufficient for rate calculat ions , however , 
potent ia l energies a long the M E P can be i m p r o v e d by sca l ing by a factor to 
reproduce classical f o r w a r d a n d / o r reverse barriers f r om more accurate 
calculat ions or p e r f o r m i n g a series of s ingle po int calculat ions at a more 
accurate ab initio M O level . 

1.5 2 2.5 
1000/T (K) 

Figure 5: Arrhenius plot of the CH 

Symbols are experimental data. Lines are the 
C V T / S C T results {PMP4//QCISD (solid), 
PMP4//BH&HLYP(dashed), scaled BH&HLYP 
(dotted), scaled QCISD (dashed-dotted)}. 
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Β. Proton transfer i n formamidine-water complex 

Η 
I 

Η 

Η. 

H 

,H 

H 

4 
H 

W e used p r o t o n transfer i n the f o r m a m i d i n e - w a t e r complex as a 
basic m o d e l for s t u d y i n g pro ton transfer i n h y d r o g e n b o n d e d systems, 
t h o u g h f o r m a m i d i n e a n d its a m i d i n e class also have their o w n b i o l og i ca l 
a n d p h a r m a c e u t i c a l impor tance . 

P r e v i o u s s t u d i e s 5 ' 7 6 f o u n d that a d d i n g a water molecule to br idge 
the p r o t o n donor a n d acceptor sites stabil izes the t rans i t ion state. T h i s 
l owers the barr ier by 27 k c a l / m o l , a n d as a consequence, s igni f i cant ly 
enhances the transfer rate. D u e to the s m a l l p r o t o n mass , w e also f o u n d 
that the t u n n e l i n g contr ibut i on is s igni f icant , p a r t i c u l a r l y at l o w 
temperatures , b y c o m p a r i n g the C V T a n d C V T / S C T results . F u r t h e r m o r e , 

the "corner cut t ing" effect 
i n c l u d e d i n the C V T / S C T 
calculat ions o n the 
m u l t i d i m e n s i o n a l surface 
greatly enhances the 
t u n n e l i n g probab i l i t y for 
p r o t o n transfer i n the 
f o r m a m i d i n e - w a t e r c o m p l e x 
(see F igure 6). Th i s is 
i l lustrated b y the large 
increase i n the C V T / S C T rate 
constants w h e n c o m p a r e d to 
the C V T / Z C T rate. N o t e that 
i n Z C T ca lcu lat ions , t u n n e l i n g 
is restricted to be a long the 
M E P . The react ion va l l ey i n 
this case was calculated at the 
M P 2 leve l . The potent ia l 
energy a long the M E P was 
further scaled by a factor of 
1.123 to m a t c h the 

• 10 -

-20 -

-30 « • ' ' * • ' • ' * • • • • I M I I 1 I I I I I I 
1 2 3 4 5 6 7 

10007T(K) 
Figure 6: Arrhenius plot of calculated CVT, 
CVT/ZCT and CVT/SCT thermal rate constants. 
(Adapted from Ref. 5). 
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C C S D ( T ) / / M P 2 classical barr ier heights. In a l l ab initio M O a n d D F T 
calculations for this system, the 6-31G(d,p) basis set was used . 

The large "corner cut t ing" t u n n e l i n g effect requires m u c h more 
potent ia l energy surface i n f o r m a t i o n than just i n the v i c i n i t y of the saddle 
po int . H o w e v e r , due to the size of this system, one w o u l d l ike to 
m i n i m i z e the n u m b e r of M P 2 H e s s i a n calculat ions w i t h o u t a s igni f i cant 
loss to the accuracy. T h u s , it is a good example to i l lustrate the accuracy of 
our focus ing technique descr ibed be low. 

For this d i scuss ion , the M E P was calculated at the M P 2 leve l w i t h a 
m a x i m u m of 28 H e s s i a n points evenly d i s t r ibuted between s values of 0 
a n d 1.2 a m u 1 / 2 b o h r . D u e to the s y m m e t r y of the M E P , this is equiva lent to 
a total of 59 H e s s i a n po ints , i n c l u d i n g three stationary po ints , for the entire 
M E P . U s i n g the C V T / S C T thermal rate constants calculated f r o m these 28 
calculated H e s s i a n po ints as the reference po int , w e have calculated 
C V T / S C T rate constants w i t h the n u m b e r of H e s s i a n points less than the 
f u l l 28, w h i c h were chosen by the focusing technique, a n d p lo t ted i n F igure 
7 w i t h the percent difference i n the rate constant at 300 Κ versus the 
n u m b e r of Hess ians used. W e f o u n d that a m i n i m u m of 10 H e s s i a n po ints 
is r e q u i r e d for the convergence of the rate constant to w i t h i n 10%. 
F u r t h e r m o r e , u s i n g a l ow-pass f i l t e r ing technique to remove noise i n the 

calculated effective reduced 
mass s l i gh t ly i m p r o v e s this 
convergence. N o t e that e v e n 
w i t h 5 H e s s i a n po ints , the 
calculated rate constant at 300 
Κ converges to w i t h i n a factor 
of t w o i n the 28-point case. 
For reactions w i t h a smal ler 
t u n n e l i n g c o n t r i b u t i o n t h a n 
this case, a smal ler n u m b e r of 
Hess ians m a y be sufficient. 
In a d d i t i o n , not i n c l u d i n g the 
"corner cu t t ing " effect f r o m 
the b e n d i n g modes , i.e. 
v i b r a t i o n a l modes w i t h 
frequency less than 1800 c m " 1 , 
on ly introduces a n error of 
less than 20%. 

F i n a l l y , u s i n g the M P 2 
rate results for the 
t a u t o m e r i z a t i o n i n the 
f o r m a m i d i n e - w a t e r complex 

- - 0 - - not smoothed 

0 5 10 15 20 25 30 
number of Hessians along M E P 

Figure 7: Convergence of the calculated rate 
constant at 300 Κ as functions of the number 
of Hessians along the MEP. (Adapted from 
Ref. 5) 
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(Adapted from Ref. 5.) 
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as a reference po int , w e have invest igated the accuracy u s i n g the non- l o ca l 
B H & H - L Y P D F T m e t h o d for ca lcu lat ing the potent ia l energy i n f o r m a t i o n . 
I n this case, w e also used the same barrier sca l ing procedure descr ibed 
above. In a d d i t i o n , w e also invest igated another c o m p u t a t i o n a l l y less 
d e m a n d i n g approach . That is to use H F theory, but i n a d d i t i o n to s ca l ing 
the classical barr ier to the C C S D ( T ) / / M P 2 va lue , the H F frequencies were 
also scaled b y a factor of 0.9. In bo th H F a n d D F T cases, the M E P ' s were 
calculated w i t h the same step size of 0.1 a m u ^ b o h r as used i n the M P 2 
calculat ions . The A r r h e n i u s p lo t for the M P 2 , H F a n d D F T C V T a n d 
C V T / S C T rate constants are also s h o w n i n F igure 8. W e f o u n d the H F -
C V T rate constants are noticeably smal ler than the M P 2 a n d D F T rates. A s 
a result , the f ina l H F C V T / S C T rate constants are also smal ler a n d the 
differences increase as the temperature decreases. The excellent agreement 
be tween the M P 2 a n d D F T rate constants further supports the above 
conc lus i on o n the use of non- loca l D F T methods for direct ab initio 
d y n a m i c s calculations. For instance at 300 K , the H F rate constant is 
smal ler than the M P 2 va lue b y a factor of 8.0 w h i l e the D F T rate constant is 
larger b y a factor of 1.6. 

W e have further deve loped these direct ab initio d y n a m i c s methods 
to calculate v ibrat ional -state selected rates of po lya tomic r e a c t i o n s . 1 2 , 3 7 The 
results so far are encouraging . Par t i cu lar ly , it a l l ows one to correlate 
features o n the potent ia l surface to state specific chemistry . T h e r m a l a n d 
vibrat ional -state selected rate constants of po lya tomic reactions n o w can be 
r o u t i n e l y calculated f r o m ab initio M O a n d / o r D F T methods b y u s i n g our 
TheRate (Theoret ical Rate) p r o g r a m . 7 7 W e are i n the process of 
d e v e l o p i n g n e w methodolog ies for i n c l u d i n g a n h a r m o n i c i t y a n d large 
curvature t u n n e l i n g contr ibut ions w i t h i n our direct ab initio d y n a m i c s 
approach . 

IV. CONCLUSION 
The direct ab initio d y n a m i c s m e t h o d w e descr ibed above w i t h the 

use of a non - l o ca l D F T m e t h o d to p r o v i d e potent ia l energy i n f o r m a t i o n 
a n d a focus ing technique to m i n i m i z e the n u m b e r of Hess ians r e q u i r e d 
offers a p r o m i s s i n g alternative for s t u d y i n g kinet ics , d y n a m i c s a n d 
m e c h a n i s m s of large po lya tomic reactions. W i t h i n the same m e t h o d o l o g y , 
one can further extend the d y n a m i c a l theory to treat chemica l reactions o n 
crystal surfaces as w e l l as i n solut ions. S u c h steps are n o w be ing taken i n 
our lab. 
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Chapter 7 

Comparison of Local, Nonlocal, and Hybrid 
Density Functionals Using Vibrational 

Absorption and Circular Dichroism 
Spectroscopy 

P. J. Stephens1, F. J. Devlin1, C. S. Ashvar1, K. L. Bak2, P. R. Taylor3, 
and M. J. Frisch4 

1Department of Chemistry, University of Southern California, 
Los Angeles, CA 90089-0482 

2UNI-C, Olof Palmes Allé 38, DK-8200 Aarhus N, Denmark 
3San Diego Supercomputer Center, P.O. Box 85608, 

San Diego, CA 92186-9784 
4Lorentzian, Inc., 140 Washington Avenue, North Haven, CT 06473 

A b in i t i o calculations of vibrational unpolarized 
absorption and circular dichroism spectra of 6,8-
dioxabicyclo[3.2.1] octane are reported. The harmonic 
force field is calculated via Density Functional Theory 
using three density functionals: L S D A , B L Y P , B 3 L Y P . 
The basis set is 6-31G*. Spectra calculated using the 
hybrid B 3 L Y P functional give the best agreement with 
experimental spectra, demonstrating that this functional 
is superior in accuracy to the BLYP and LSDA 
functionals. 

Density Functional Theory (DFT) (1) is increasingly the methodology 
of choice in ab initio calculations. At the same time, the number, 
variety, and sophistication of density functionals is also increasing. 
The choice of D F T is thus accompanied by the problem of selecting 
the optimum functional. 

In this paper, we demonstrate the utility of vibrational 
unpolarized absorption spectra and vibrational circular dichroism 
spectra in assessing the accuracies of density functionals. Specifically, 
we report calculations of the vibrational absorption and circular 
dichroism spectra of 6,8-dioxabicyclo[3.2.1]octane, 1, using three 
density functionals and evaluate the relative accuracies of these 
functionals by comparison of the predicted spectra to experiment. 

Broadly speaking, density functionals in active use today can 
be classed as: (i) local; (ii) non-local; or (iii) hybrid. Local functionals 

0097-6156/96/0629-0105$15.00/0 
© 1996 American Chemical Society 
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106 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

are the simplest and were the first to be used. Non-local (or 
"gradient") corrections were then added, creating non-local 
functionals. Very recently, even more sophisticated functionals have 
been introduced, based on the Adiabatic Connection Method of 
Becke (2), which are referred to as hybrid functionals. In this work we 
utilize one functional from each class: (i) the Local Spin Density 
Approximation ( L S D A ) functional; (ii) the non-local Becke-Lee-
Yang-Parr ( B L Y P ) functional; and (iii) the Becke 3-Lee-Yang-Parr 
(B3LYP) hybrid functional. 

Since the development and implementation of analytical 
derivative methods for D F T energy gradients, vibrational frequencies 
have been used extensively in evaluating the accuracies of density 
functionals (3). The recent development and implementation of 
analytical derivative methods for D F T energy second derivatives 
(Hessians) (4) has greatly increased the efficiency of calculations of 
D F T harmonic frequencies. In contrast, vibrational intensities have not 
been substantially utilized. In this work we demonstrate the 
advantages of incorporating vibrational intensities in the evaluation 
of density functionals. We further demonstrate the additional 
advantages of the use of both unpolarized absorption and circular 
dichroism intensities. Unpolarized vibrational absorption 
spectroscopy is widely utilized and well-understood. Vibrational 
Circular Dichroism ( V C D ) spectroscopy (5) is not yet as widely 
utilized. Our work wil l illustrate its substantial potential. 

Methods 

D F T harmonic force fields and atomic polar tensors (APTs) were 
calculated using G A U S S I A N 92 /DFT and the three density 
functionals: 
1) L S D A (local spin density approximation): this uses the standard 
local exchange functional (6) and the local correlation functional of 
Vosko, Wilk, and Nusair (VWN) (7). 
2) B L Y P : this combines the standard local exchange functional with 
the gradient correction of Becke (6) and uses the Lee-Yang-Parr 
correlation functional (8) (which also includes density gradient terms). 
3) Becke3LYP: this functional is a hybrid of exact (Hartree-Fock) 
exchange with local and gradient-corrected exchange and correlation 
terms, as first suggested by Becke (2). The exchange-correlation 
functional proposed and tested by Becke was 

E x c = (1 - a 0 ) E ^ D A + a 0 E f + a x AE x
B 8 8 + E * D A + acAE™91 (1) 

Here ΔΕ Χ
8 8 is Becke's gradient correction to the exchange functional, 

and ΔΕ™91 is the Perdew-Wang gradient correction to the correlation 
functional (9). Becke suggested coefficients a 0 = 0.2, a x =0.72, and 
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a c =0.81 based on fitting to heats of formation of small molecules. 
Only single-point energies were involved in the fit; no molecular 
geometries or frequencies were used. The Becke3LYP functional in 
Gaussian 92/DFT uses the values of a 0 , a x , and a c suggested by 
Becke but uses L Y P for the correlation functional. Since L Y P does 
not have an easily separable local component, the V W N local 
correlation expression has been used to provide the different 
coefficients of local and gradient corrected correlation functionals: 

E° 3 L Y P = (1 - a 0 ) E ^ D A + a 0 E f + axAE°8 8 + a c E ^ + (1 - a c ) E c
V W N (2) 

The standard fine grid in Gaussian 92/DFT (70) was used in all D F T 
calculations. This grid was produced from a basic grid having 75 
radial shells and 302 angular points per radial shell for each atom and 
by reducing the number of angular points for different ranges of radial 
shells, leaving about 7000 points per atom while retaining similar 
accuracy to the original (75,302) grid. Becke's numerical integration 
techniques (11) were employed. 

Atomic axial tensors (AATs) (12) were calculated using the 
distributed origin gauge (12,13), in which the A A T of nucleus λ , 
(M„ p)°, with respect to origin Ο is given by 

(Μ*)0 = (ΟΧ + - ^ Σ ^ < p « (3) 

where R° is the equilibrium position of nucleus λ relative to origin O, 
P ^ is the A P T of nucleus λ , and (ΐ£ β) λ is the electronic A A T of 
nucleus λ calculated with the origin at R j . "Distributed" A A T s , ( Ι^ ) λ , 
were calculated at the S C F level using Gauge-Invariant Atomic 
Orbitals (GIAOs) (14) via the S I R I U S / A B A C U S program suite (75). 
(At this time, D F T code for A A T s is not available.) 

Harmonic force fields, APTs and A A T s were calculated using 
the 6-31G* basis set. Vibrational frequencies, dipole strengths and 
rotational strengths were calculated thence, and in turn used to 
synthesize unpolarized absorption and circular dichroism spectra. 

Results 

Experimental unpolarized absorption and circular dichroism spectra of 
1 have been reported by Wieser and coworkers (76). (Note that ref. 
16 also diagrams the structure of 1.) The spectra over the range 800-
1500 c m 1 are reproduced in Figures 1 and 2. Calculated spectra, 
obtained from calculated frequencies, dipole strengths and rotational 
strengths using Lorentzian band shapes (77) and an arbitrarily chosen 
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Figure 1: Vibrational unpolarized absorption spectra of 1: a) 
experimental spectrum (7(5); b)-d) calculated spectra, using the 
b) B3LYP, c) BLYP and d) LSDA functionals. Bandshapes in 
b)-d) are Lorentzian; γ=4.0 cm-1 for all bands. Fundamentals are 
numbered. 
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Figure 2: Vibrational circular dichroism spectra of 1: a) experimental 
spectrum (16)\ b)-d) calculated spectra, using the b) B3LYP, c) 
BLYP and d) LSDA functionals. Bandshapes in b)-d) are 
Lorentzian; γ=4.0 c m 1 for all bands. Fundamentals are 
numbered. 
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band width (half-width at half-height, γ =4 cm 1), are also displayed in 
Figures 1 and 2. 

The absorption and VCD spectra obtained using the B3LYP 
functional are in excellent qualitative agreement with the 
experimental spectra, allowing for an overall shift to higher frequency. 
Together, the absorption and VCD spectra permit assignment of the 
fundamentals 10-38 of 1. Fundamentals 10-28 and 35-38 are resolved 
and assignable from the absorption spectrum. Fundamentals 12-15, 
17-20, 23, 24, 26, 28-33, and 38 are resolved and assignable from the 
VCD spectrum. Fundamentals 33 and 34 are predicted to be 3 c m 1 

apart and of comparable absorption intensity; they can both be 
assigned to the absorption band just above 1360 c m 1 . The VCD 
intensity of fundamental 34 is predicted to be weak and only 
fundamental 33 contributes to the VCD spectrum therefore. Note that 
the assignment of modes 30-32 on the basis of the absorption 
spectrum alone is uncertain, due to the presence of 
overtone/combination bands in this region. The VCD spectrum 
removes the uncertainty. Wieser and coworkers reported 
experimental frequencies, dipole strengths and rotational strengths for 
1. Their values for the bands assigned above as fundamentals are 
given in Table 1, together with the calculated results. 

The absorption and VCD spectra predicted using the BLYP 
functional are quite similar to those obtained from the B3LYP 
functional for fundamentals 23-38, allowing for an overall shift to 
lower frequency. In contrast, the spectra for fundamentals 12-22 are 
substantially different. The changes in relative absorption and VCD 
intensities of fundamentals 21 and 22, of fundamentals 18 and 19, and 
of fundamentals 12 and 13/14 are especially noticeable. The BLYP 
spectra for fundamentals 12-22 are overall in worse agreement with 
experiment. 

The absorption and VCD spectra predicted using the LSDA 
functional are very different from those obtained from the B3LYP 
and BLYP functionals. They are also in very much worse agreement 
with experiment. 

On the basis of these results, we conclude that the three 
functionals can be ranked in relative accuracy: 

B3LYP > BLYP » LSDA 
This conclusion is consistent with that arrived at in our earlier study 
of 4-methyl-2-oxetanone (18) and in a forthcoming study of a set of 
10, small chiral molecules (79). It is also consistent with a comparison 
of calculated and experimental harmonic frequencies for 11 small 
molecules (20): at the 6-31G* basis set level, the mean absolute 
percentage deviations of calculated frequencies were found to be 
2.0%, 3.3% and 3.5% for the B3LYP, BLYP and LSDA functionals 
respectively. 

It is important to emphasize that a comparison of calculated 
and observed frequencies alone does not lead to the same conclusion. 
Observed frequencies are lower than harmonic frequencies due to 
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T A B L E 1: Frequencies, Dipole Strengths and 
Rotational Strengths of l a 

calculation b experiment c 

fund. υ D R υ D R 

38 1555 4.1 6.7 1484 13.1 19.4 
37 1532 12.0 1.0 1458 20.7 
36 1513 5.4 0.4 1438 11.9 
35 1506 4.8 -0.2 1435/1430 5.8/6.7 
34 1415 17.2 1.6 1365 11.1 
33 1412 25.0 -15.5 1362 14.9 -18.8 
32 1401 14.6 12.6 1343 21.8 24.9 
31 1386 11.8 -14.1 1338 11.4 -29.8 
30 1376 39.4 21.3 1331 37.6 52.3 
29 1359 0.8 -2.8 1315 5.8 -15.2 
28 1349 30.9 0.4 1310 28.1 11.6 
27 1314 1.7 -1.7 1276 0.8 
26 1278 12.8 -8.1 1240 11.5 -16.4 
25 1243 4.2 -2.5 1211 
24 1214 25.9 3.9 1182 34.4 
23 1187 112.6 5.5 1157 126.3 13.6 
22 1149 328.7 -9.6 1124/1119 171.5/205.9 
21 1120 20.4 0.1 1089 33.4 -9.6 
20 1095 18.6 19.8 1076 17.0 19.3 
19 1053 78.0 32.5 1033 77.4 20.3 
18 1047 149.9 -47.3 1022 190.8 -62.3 
17 1023 180.7 -34.9 993 248.5 -80.0 
16 979 25.0 -6.5 962 32.6 6.4 
15 953 117.3 78.4 939 120.2 88.0 
14 911 64.5 24.2 893 120.1 63.3 
13 903 103.2 -30.1 882 216.0 -74.0 
12 878 145.3 26.5 857 174.6 32.5 
11 842 8.9 -3.3 832 26.1 
10 815 16.7 -3.0 809 21.2 

Footnotes: 

a. Frequencies in c m 1 , dipole strengths in Ι Ο 4 0 esu 2 cm 2 , rotational 
strengths in K M 4 esu 2 cm 2 . Rotational strengths are for (1R, 5S)-1. 

b. B 3 L Y P / D F T force field and APTs; GIAO/SCF Distributed A A T s ; 
6-31G* basis set. 

c. From reference 16. 
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anharmonicity. For the 11 small molecules referred to above, mean 
absolute percentage deviations of calculated and observed 
frequencies were 4.5%, 2.6% and 2.5% for B 3 L Y P , B L Y P and L S D A 
respectively. Using observed frequencies would thus lead to the 
erroneous conclusion that the B L Y P functional is more accurate than 
the B 3 L Y P functional. In the case of 1, comparison of calculated and 
observed frequencies would likewise indicate B L Y P to be superior to 
B 3 L Y P . Only i f the anharmonicity corrections are included can the 
relative accuracies of the functionals be reliably assessed using 
frequencies. 

Conclusion 

Our calculations for 1 convincingly demonstrate that the hybrid 
density functional, B 3 L Y P , provides a harmonic force field—and, 
thence, normal coordinates and unpolarized absorption and V C D 
intensities—of accuracy greater than obtained using the B L Y P and 
L S D A functionals. It follows that, in future predictions of vibrational 
spectra using D F T , hybrid functionals such as B 3 L Y P are the best 
choice of the currently available options. 

Our calculations also demonstrate the utility of vibrational 
spectra in defining the relative accuracies of density functionals. It is 
likely that functionals more accurate than the current generation of 
hybrid functionals wi l l be developed in the future. Vibrational spectra 
should be useful in assessing their accuracy. In contrast, with the 
exception of molecules where anharmonicity-corrected vibrational 
frequencies are available, the comparison of frequencies wi l l not be 
useful since the deviations between calculation and experiment wi l l 
be dominated by anharmonicity. 

Lastly, we have illustrated again the added benefits of using 
both unpolarized absorption and V C D spectra in comparing 
theoretical and experimental spectra. 
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Chapter 8 

Polymers and Muffin-Tin Orbitals 

Michael Springborg, Catia Arcangeli1, Karla Schmidt, and Heiko Meider 

Department of Chemistry, University of Konstanz, 
D-78434 Konstanz, Germany 

A method for calculating electronic properties of polymeric ma
terials is reviewed. It is based on the density-functional formal
ism of Hohenberg and Kohn. The eigenfunctions to the Kohn-
Sham equations are expanded in a basis set of linearized muffin-tin 
orbitals, but no shape approximation for the potential is made. 
The materials of interest are assumed to be infinite, periodic, non
-interacting, helical chains, and the symmetry is explicitly used in 
constructing helical Bloch waves. As examples of the calculation 
of structural properties we discuss sulphur helices and the dimer-
ization in trans polyacetylene. A method that allows for calcu
lating energies of defect-induced orbitals is demonstrated on po-
larons in polythiophene and solitons in hydrogen fluoride. As an 
intermediate between insulating and semiconducting polymers we 
discuss polybutadiene. Momentum densities for different periodic 
C2H2Cl2 chains are presented, and the importance of including 
spin-orbit couplings when studying optical properties is demon
strated for bismuth chains. Finally, a method for studying doped 
chains is presented and preliminary results for the dimerization of 
a linear doped carbon chain are reported. 

During the last few years electronic-structure calculations within the Hohenberg-
Kohn formalism (1) have become important for the studies of properties of molec
ular systems, as is impressively demonstrated by other contributions of this vol
ume. One has now reached a state where many materials can be treated almost 
routinely with density-functional methods [see, e.g., (2)]. The systems that can 
be treated most easily are either finite in all three dimensions or infinite and 
periodic in the three dimensions. When the systems are neither finite nor peri
odic in all three dimensions, it is considerably more difficult to treat them with 
density-functional methods. 

e r r e n t address: Max-Planck-Institut fur Festkôrperforschung, D-70569 Stuttgart, 
Germany 

0097-6156/%A)629-0114$15.00A) 
© 19% American Chemical Society 
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8. SPRINGBORG ET AL. Polymers and Muffin-Tin Orbitals 115 

Polymeric materials, the subject of the present contribution, are a represen
tative example. We shall here classify a material consisting of very long chains 
for which the intrachain interactions are much stronger than the interchain inter
actions as a polymer. Thus, this class contains also many systems that usually 
not are given the label polymer. Assuming that certain idealizations to be de
scribed below are reasonable, we have developed a density-functional method 
(3,4) for studying these materials. This method shall briefly be reviewed in the 
next section. 

Subsequently we discuss various recent applications of the method as well 
as some extensions. We start out with discussing the total energy of perfect, 
defect-free helical polymers as a function of structure for two periodic, infinite 
polymers, i.e. a sulphur helix and trans poly acetylene. However, in many cases 
structural defects, and in particular localized orbitals induced by these defects, 
are important for the properties of the materials, and we therefore discuss how 
calculations on the periodic structures can give information on these states. This 
discussion is examplified through applications on polarons in polythiophene and 
solitons in hydrogen fluoride. In a further study of the electronic orbitals, but 
this time for a periodic system, we consider an intermediate system between 
insulating and semiconducting polymers, i.e. polybutadiene. In order to demon
strate that the density-functional calculations also can give useful information on 
other properties than the total energy and the single-particle levels, we continue 
by studying momentum space densities, and show that these can give informa
tion that is not directly accessible by position-space studies. In particular we 
demonstrate this for three periodic ( C 2 r l 2 C l 2 ) z polymers. A recent extension 
of our computational scheme is devoted to spin-orbit couplings, and we show 
that these are important when discussing optical properties of polymeric chains 
containing heavier atoms. This discussion is examplified through results for bis
muth chains. In the last application we present results for calculations on doped 
chains, in particular on the dimerization of a simple conjugated polymer. 

Helical Polymers and the L M T O s 

Neglecting interchain interactions we shall assume that the system of our interest 
is periodic, infinite, isolated, helical, and with a straight helical axis. A hypo
thetic example of such a chain is shown schematically in Figure 1. It has two 
atoms per unit cell and it is obvious that any pair of atoms is equivalent to any 
other pair. 

The primitive symmetry operation that maps the polymer onto itself is a 
combined rotation of ν and translation of h. Since the chain is assumed to be 
isolated, ν does not need to be commensurate with 2π. 

The helical symmetry is explicitly used by defining local atom-centered right-
handed coordinate systems that have the ζ axes parallel to the helical axis and 
the χ axes pointing away therefrom. Basis functions, electron densities, poten
tials, etc. will then, when described in the local coordinate systems, be equivalent 
for different unit cells. Moreover, helical Bloch waves generated from the atom-
centered basis functions can be used in creating symmetry-adapted basis func
tions in a manner completely analogous to that used for the more conventional 
translational symmetry. Finally, zigzag and translational symmetries are special 
cases of the helical symmetry corresponding to ν — π and υ = 2π, respectively. 

In our approach, the eigenfunctions to the Kohn-Sham equations 

[ - £ - V 2 + V(f)]^(f) = enfc(f) (1) 
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116 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

^ / Figure 1. A hypothetic helical poly-
mer wi th two atoms per unit cell. 
The vertical dashed line represents 
the helical axis and the dashed curve 
symbolizes the screw axis symmetry. 

are expanded i n a basis of linearized muffin-tin orbitals ( L M T O s ) . These are 
defined as follows. 

We separate space into atom-centered non-overlapping (muffin-tin) spheres 
and the interstit ial region. Inside any sphere (at R, e.g.) we expand the potential 
in angular components, 

n o = Σ W i f - R \ ) Y ^ r ^ ~ R ) (2) 
L 

where L = ( / ,m) , and r — R is a unit vector along the direction of r — R. 
Subsequently, we solve numerically the one-dimensional K o h n - S h a m equations 

inside the sphere for reasonable energies ev ^ L K. We also define 

°€V,R,L,K 

A n L M T O centered on an atom (at R2) is then defined as a Hankel function 
in the interstit ial region, 

« A , , L „ . · KLt{K,r- R2) = c R t M < K • {2h_1)„h\l){K\P-R2\)YL(r - R2) (5) 

augmented continuously and differentiably inside another sphere (e.g., at Ri) 
with φ and φ functions 

Y,[nL,lt{K,iU - R ^ A l t L u K ( ^ + ilL2Ll(K,R2 - 5 i ) ^ i > i i i ( , ( f ) ] . (6) 
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8. SPRINGBORG ET AL. Polymers and Muffin-Tin Orbitals 117 

Thereby the constants c, Π, and Ω are defined [for details, see (3)J. We notice 
that for Ri = R2 the sum in equation 6 reduces to one term (L2 = L\) for which 
Π = 1 per definition. 

As an illustration of our approach we show in Figure 2 the potential inside 
an oxygen sphere for a C O 2 molecule as well as an L M T O centered on the same 
atom. 

(b) 

Figure 2. Results for a linear C O 2 molecule with the C atom placed at the 
origin and the Ο atoms at ζ = ±2.5 a.u. The sphere sizes were chosen equal 
to 1.0 a.u. (a) shows the full potential (solid curve) and its s component 
(long-dashed curve) inside the sphere at tne Ο atom at ζ = —2.5 a.u., along 
the ζ axis, whereas the short-dashed curve shows the difference scaled by a 
factor of 10. (b) shows a pz L M T O centered on the same atom. The dashed 
curve is the Hankel function of equation 5, and the vertical dashed lines mark 
the boarders of the muffin-tin spheres. 

The L M T O s are per construction good approximations to the exact solutions 
to equation 1 since the potential is close to spherically symmetric (cf. Figure 2a). 
Moreover, they adopt themselves to the potential (cf. Figure 2b) as this changes 
during the iterative process of solving the Kohn-Sham equations. We stress, 
however, that the muffin-tin potential (spherical symmetry inside the spheres; 
constant in the interstitial region) is used only in defining the basis functions: 
in calculating matrix elements etc. we include the full potential. Gaussian 
and Slater-type orbitals can also be considered constructed from a spherically 
symmetric potential! 

Our method may appear very different from more well-known methods for 
electronic-structure calculations. This is, however, not the case as, e.g., can be 
seen by considering the electron density. Inside any sphere (at R) this becomes 

»=1 1*1,1*2 * l i * 2 

which is closely related to the form used in various density-functional methods for 
crystalline materials. Using the form (7) the potential can be evaluated relatively 
easily and written in the form (2). We mention that the constants a and b are 
obtained from the solutions to the Kohn-Sham equations. 
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118 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

In the interstitial region we make, equivalent to the approach of many other 
density-functional methods for molecular systems, a least-squares fit, 

occ. 

i=l L i , L 2 * i ,*2 &l}ft7 

χ L a 

and the potential is then expressed as 

* Σ Σ Σ ^ , Μ • Λ). (9) 

Details about this and other aspects of the calculations can be found in (3,4). One 
important aspect shall, however, be mentioned. Due to the expressions (2), (7)-
(9) all densities and potentials appear as sums of single-atom components. This 
offers the possibility to construct good first approximations by superimposing 
those for individual atoms, that, moreover, can be obtained from calculations 
on small model systems where the atoms are embedded in the proper chemical 
environment. 

Finally, in the studies whose results will be reported below we use the local 
approximation of von Barth and Hedin (5) in describing exchange and correlation 
unless stated otherwise. 

Applications 

Sulphur Helices. Density-functional methods are first of all methods for cal
culating the total energy as a function of structure. Our first example shall 
therefore concentrate on calculated structural properties of a specific helix, i.e., 
the sulphur helix. This has only one atom per unit cell, and we need accordingly 
three parameters for specifying the structure. As those we choose the nearest-
neighbour bond length r, the bond angle a , and the dihedral angle 7. Table I 
gives our optimized values of those (6) together with the experimental values (7). 
Except for the bond length, our values agree well with the experimental values. 
Moreover, as Figure 3 shows, the total-energy surface is very flat around the 
minimum which makes the optimized values very sensitive to small inaccuracies 
in the calculations, and due to the relatively strong dependence of r on α the 
discrepancy in r may be explained therefrom. 

Table I. O u r optimized values of the structural para
meters of a sulphur helix together with experimental 
values 

r ( A ) α (deg.) 7 (deg.) 
Present 
Experiment 

4.22 
3.90 

109 
106 

86.5 
85.3 
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(4.22,87) 
' 1 1 1 1 1 • « » 

100 125 

α (deg.) 

Figure 3. Total energy (eV/atom) 
for a sulphur helix as a function of a. 
The two other structural parameters 
(r,7) have been optimized for each 
value of α and are also shown. 

ο 

CM I ι ι ι ι I ι ι ι ι ι 
1 0 0.5 1 

Figure 4. Band structures for the op
timized sulphur helix, k = 0 and k = 
1 is the zone center and zone edge, 
respectively, and the dashed line rep
resents the Fermi level. 

Several years ago it was discussed whether the sulphur helix was a 7/2 (8) or 
a 10/3 (9) helix. These values correspond to υ = 103° and υ = 108°, respectively. 
Our optimized value υ = 107° agrees well with those. 

The sulphur helix is semiconducting as the band structures in Figure 4 show. 
An optimized zigzag or linear sulphur chain is on the other hand metallic (6) 
and we suggest accordingly that the fact that the helical structure is the one 
with the lowest total energy may be explained as being due to a helical Peierls' 
transition. 

Trans Polyacetylene. The structure of trans polyacetylene (CH) X is shown in 
Figure 5, where we also show the structural parameters that have been optimized 
using the present method (4). 

D 
Figure 5. Structure of trans polyacetylene together with the definition of the 
various structural coordinates. Some of the structural degrees of freedom were 
kept frozen in the calculations as indicated. Dark and light circles represent 
carbon and hydrogen atoms, respectively. 
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Figure 6. Tota l energy i n eV per 
C2H2 unit relative to that of the u n -
dimerized structure as a function of 
dimerization for L D A (squares) and 
G G A (crosses). 

The covalent bonds of trans polyacetylene are formed by energetically low-
lying σ bonds between carbon sp2 hybrids and hydrogen Is functions, plus π 
bonds between the C atoms. The π orbitals are those appearing closest to the 
Fermi level. W i t h effectively one (π) electron per ( C H ) site, the system expe
riences a Peierls ' distortion (dimerization) giving alternating shorter and longer 
C - C bonds. As shown i n Table II this is found experimentally (10,11) and the
oretically both wi th our method (4) and with Hartree-Fock calculations (12). 
In addit ion, we observe i n Table II a good agreement between al l three sets of 
parameters. 

Table II. Structural parameters (cf. Figure 5) for trans poly
acetylene from experiment, our calculations, and Hartree-Fock 
calculations 

di (A ) d2 (A) α (deg.) D(A) 
Present 1.36 1.46 128 2.53 
Exper iment 1.36 1.44 123 2.46 
Hartree-Fock 1.33 1.48 124 2.48 

Trans polyacetylene is the prototype for a larger class of conjugated polymers 
that contain backbones wi th alternating C - C single and double bonds. These 
have a number of interesting properties due to π electrons, that have attracted 
a large research activity, both from basic science and for industr ia l applications 
[see, e.g., (13)]. M a n y of these properties are related conceptually to the inter
change of the double and single bonds, i.e., to the relatively high mobi l i ty or 
polarizabil ity of the π electrons. For trans polyacetylene the interchange of the 
double and single bonds leads to a new structure energetically degenerate wi th 
the original one, but for many other conjugated polymers the two structures dif
fer in energy. For trans polyacetylene, interfaces, so-called soli tons, separating 
regions wi th different bond-length alternations may exist. For al l conjugated 
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8. SPRINGBORG ET AL. Polymers and Muffin-Tin Orbitals 111 

polymers polarons may exist. Polarons are confined structural defects contain
ing the energetically unfavourable bond-length alternation embedded in the low-
energy structure. These defects are highly mobile and may act as carriers of 
charge, spin, or energy. 

One of the m a i n ingredients in understanding these defects is that of under
standing the dimerizat ion, i.e., the size of the bond-length alternation as well as 
the energy gain upon this distortion. For trans polyacetylene in part icular , it 
has been suggested that the Peierls* mechanism is not responsible for the exper
imentally observed dimerizat ion, and that an accurate description of correlation 
effects, beyond that of the local-density approximation ( L D A ) , is required in 
order to correctly describe the dimerized ground state of this system (14). In 
order to test the role of correlation in the dimerization process we have studied 
the total energy as a function of bond-length alternation using both the L D A of 
von B a r t h and Hedin expression (5), and the more accurate gradient corrected 
exchange-correlation density functional proposed by Perdew and Wang (15,16), 
known as the generalized gradient approximation ( G G A ) . We fixed al l bond an
gles at 120° as well as the unit-cel l length at 2.41 À. B y displacing the C H units 
rigidly parallel to the polymer axis alternatingly i n one or the other direction we 
obtained the results shown i n Figure 6. 

It is seen that the results depend only weakly on the applied functional. 
Moreover, the energy gain upon dimerization is very smal l (about 0.03 eV per 
C2H2 un i t ) , explaining the high mobil i ty of the solitons as well as their stability. 
The results of Figure 6 may subsequently form a part of the basis for further 
theoretical studies of the solitons. We consider, however, this to be beyond the 
scope of the present contribution and refer the interested reader to (4). 

P o l y t h i o p h e n e . Polythiophene, Figure 7, is another of the conjugated polymers 
mentioned above. We shall for this discuss further how the structural defects can 
be studied. 

Figure 7. (upper part) T h e aromatic 
and (lower part) the quinoid struc
ture of polythiophene. 

It is known that the lowest energy is found for the aromatic structure, 
whereas the quinoid structure corresponds to a metastable structure. A po-
laron is a finite region where the structure changes from the aromatic towards 
the quinoid structure and back again. The importance of this structural defect 
comes from the fact that it induces states in the gap separating occupied and 
empty bands. Thereby it can accommodate charge that moreover can be trans
ported through the chain as the defect moves. It is of importance to be able to 
identify these defects, since they play a crucial role in many transport processes, 
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and optical spectroscopy devoted to detecting the gap states offers one method. 
Theory is then needed in interpreting the experimental results. 

The simplest single-particle models predict that two polaron-induced gap 
levels appear exactly symmetrically in the gap [see, e.g., (17)], and deviations 
from this are often interpreted as indicating important correlation effects. This is, 
e.g., the case for two recent experimental studies of derivatives of polythiophene 
(18,19). 

It would be highly desirable to obtain more accurate theoretical estimates 
on the positions of the gap states. However, the presence of the defects destroys 
the periodicity of the polymer, making density-functional studies very difficult. 
Mapping the results of such studies on periodic chains onto a model Hamiltonian 
that subsequently can be used to study the defects requires very detailed density-
functional studies and is therefore also a far from trivial task. 

In order to circumvent these problems we have developed a scheme that 
allows for accurate estimates of the positions of the defect-induced gap states 
in quasi-one-dimensional materials (20,21). It is not restricted to the present 
L M T O method or to density-functional methods, but is general for single-particle 
models. We shall illustrate it here for the polarons in polythiophene. 

In Figure 8a we show the π bands of a realistic structure for polythiophene, 
and in Figures 8b and 8c the electron densities of the two orbitals closest to 
the Fermi level (22). When passing from the aromatic to the quinoid structure, 
the energy of the H O M O will move upwards as is evident from the contour 
plot of Figure 8b. Similarly, the energy of the L U M O will go down, but not as 
much since this orbital has dominating components on the sulphur atoms which 
hardly experience the structural changes. In total we estimate the changes of 
the frontier orbitals to be as shown schematically in Figure 9. This picture is 
actually confirmed by more detailed density-functional calculations. 

Figure 8. (a) π band structures of polythiophene. The dashed line represents 
the Fermi level, (b) and (c) contour plots of the density of the (b) H O M O 
and (c) L U M O in a plane parallel to but above that of the polymer backbone. 

In order to estimate the positions of the polaron-induced gap states we 
consider the maximal aromatic-to-quinoid distortion within the polaron. For this 
eeometry we consider the band structures of the equivalent periodic structure 
(see Figure 9). The band edges of this are then very good approximations to the 
positions of the gap states. As is seen in Figure 9, we can thereby immediately 
explain the asymmetry of the gap states as observed experimentally without 
having to assume strong correlation effects. We stress that this apparently simple 
prescription is more exact than may immediately be anticipated. 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
00

8

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



8. SPRINGBORG ET AL. Polymers and Muffin-Tin Orbitals 123 

DOS 

Q A 

Figure 9. (left part) Schematic representation of the changes of the bands 
around the Fermi level for polythiophene when passing from the aromatic 
(A) to the quinoid (Q) structure. V B and C B denotes valence band and con
duction band, respectively. Also shown (right part) is the estimated density 
of states (DOS) for a polaron-containing chain. 

Hydrogen F luor ide . Hydrogen-bonded systems represent another class of ma
terials for which defects are important. For those, solitons are believed to be 
responsible for proton transport [see, e.g., (23)]. Therefore a mechanism like 
that of Figure 10 is assumed relevant. In Figure 10 we see that two types of de
fect can be introduced, where one involves charged units (e.g., H M H + and M ~ 
units in Figure 10) and is called ionic defects, whereas the other type involves 
only neutral units (i.e., M H units in Figure 10) and is called Bjerrum defects. 

A A 

V M 

. A . A . A 

ν ν 

Figure 10. Proton transport in a hydrogen-bonded chain via solitons. M 
represents a smaller or larger group of atoms. The upper part shows ionic 
defects, since the incoming H atom may be charged, whereas the lower part 
shows Bjerrum defects. The propagation proceeds from left to right in the 
upper part and from right to left in the lower. 

Almost exclusively, experimental and theoretical studies devoted to demon
strating the existence of these defects have focused on structural and vibrational 
properties. We wanted, however, to explore whether these also might have char
acteristic electronic responses. We thereby applied the same scheme as above for 
polarons in polythiophene and studied accordingly various structures resembling 
periodic solitons. As the system of interest we chose hydrogen fluoride ( H F ) X , 
corresponding to M in Figure 10 being a single fluorine atom. We examined 
chains with four H F units per unit cell (24). 
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' ο 

(1>) («0 

0.5 
k 

0.5 
k 

0.5 
k 

Figure 11. B a n d structures of (a) periodic undistorted ( H F ) X , (b) periodically 
repeated ionic defects, and (c) periodically repeated B j e r r u m defects. T h e 
calculations were performed lor chains wi th four H F units per unit cell, k = 0 
and k = 1 represent the center and boundary of the Br i l l ou in zone, and the 
dashed line is the Fermi level. 

Some representative results are shown in Figure 11. It is clearly seen that the 
introduction of defects leads to significant modifications of the band structures 
and in particular to the occurrence of bands in regions where the unperturbed 
system has none. For the experimentally more realistic low concentrations of 
solitons these extra bands may show up as extra features i n the optical spectra. 
They may be so strong that they can be detected and thus give more information 
on the properties and existence of the solitons. 

Polybutadiene — a C o p o l y m e r between Polyethylene and Polyacety
lene. Polybutadiene, ( C H 2 C H 2 C H C H ) X , has recently attracted some interest 
[see, e.g., (25) and references therein] as a possible conducting polymer similar 
to polyacetylene and polythiophene discussed above. O n the other hand , con
sidering the polymer as a copolymer between polyethylene, ( C H 2 ) X , and poly
acetylene, ( C H ) X , one would expect that the π electrons are localized to the C H 
segments. This wi l l i n t u r n give smal l π band widths and a low conductivity. In 
order to explore this i n further detail we have studied the electronic properties 
of two isomers of polybutadiene and compared them with those of polyethylene 
and polyacetylene (26). 

In Figure 12 we show the band structures for the four systems. For the cis 
isomer (Figure 12c) both bands closest to the Fermi level are of π symmetry, 
whereas for the trans isomer (Figure 12b) an additional steeper σ band defines 
the top of the valence bands. T h u s , we see that the π bands of polybutadiene 
are flat supporting the above interpretation that the π electrons are localized 
to the C H units. Th i s is further supported by analyzing the electronic orbitals 
(26). Moreover, the gap is fairly large and resembles more that found for the 
insulating polyethylene than that found for the semiconducting polyacetylene. 
Final ly , only the lowest valence bands (between -21 and -16 e V j are broad and 
easily recognized for a l l the polymers. These correspond to C - C σ bonds. 

M o m e n t u m Densities in (C 2 H 2 C 1 2 ) X Polymers . W i t h i n the common for
mulation of density-functional formalism, the methods are constructed for pro-
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Figure 12. B a n d structures of (a) polyethylene, (b) trans and (c) cis po lybu
tadiene, and (d) polyacetylene. The clashed lines mark the Fermi levels, and 
A; = 0 and k = 1 are the center and the edge of the Br i l l ou in zone, respectively. 

ducing correct total energies and electron densities in position space. Moreover, 
the calculated single-particle energies are usually good approximations to elec
tronic excitation energies. B u t also electron densities i n momentum space can 
in principle be calculated wi th density-functional methods. In the exact formu
lation this is not only that obtained from the Fourier-transformed K o h n - S h a m 
orbitals i>i(r), but the so-called L a m - P l a t z m a n correction should be added (27J. 
As a first — and often good — approximation one may, however, neglect this 
correction, and so we shall do here. 

M o m e n t u m densities are accessible wi th various experimental techniques 
(see, e.g., (28)] and they provide useful information that only wi th difficulty can 
>e obtained by other methods. It turns out, however, that instead of analyzing 

the momentum density p(p) directly, it is more convenient to study its Fourier 
transform, the so-called reciprocal form factor B(s) (29). W i t h i n a single-particle 
picture this obeys 

/

occ. t 

p(v)e^dp = £ J * ( W ( f + - > ' ( 1 0) 

We shall here discuss and compare it for three stoichiometrically identical but 
structurally different polymers. The polymers consist of a zigzag backbone of 
carbon atoms. T w o addit ional atoms, Η and /or CI , are attached to each carbon 
atom. The chains consist of repeated units each wi th two C atoms. The three 
systems we shall study are (I) one wi th alternating two Η atoms and two CI 
atoms attached to the C atoms, and (II and III) chains wi th one Η and one CI 
atom attached to each C atom either on the same (II) or on alternating (III) 
sides of the plane of the C atoms (30). 

In Figure 13 we show the results. We see that the ζ components possess a 
characteristic m i n i m u m around 7 a.u. for al l systems as well as a node at the 
value of the lattice constant (~ 4.5 a.u.). More interesting are, however, the 
differences i n the χ and y components. As equation 10 shows, B(s) is the sum 
of the overlaps of the eigenfunctions wi th themselves but displaced s. T h u s , the 
fact that B(s) is most rapidly decaying for the χ and y components i n Figure 13a 
indicates that the orbitals of this material are those most localized i n those d i 
rections. O n the other hand , they are the least decaying in Figure 13c for which 
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(a) 

. ' r i " " i ι ΤΤΤΤρ,Μ,Μ.,,Μ.,,ΜΜ,ΜΗ 

(c) 1 

2 3 4 5 6 7 8 9 10 11 12 

s (a.u. ) 

Figure 13. The reciprocal form fac
tor B (s) for the three C2H2CI2 poly
mers with the C backbone placed in 
the (x,z) plane and the ζ axis par
allel to the polymer axis. The three 
full curves for s = 6 a.u. from below 
are for s parallel to the z, x, and y 
axis, respectively. The dashed curve 
represents the spherical average. 

we thus conclude the orbitals to be most delocalized. As discussed elsewhere 
(30) some extra features can be related to resonances between the orbitals cen
tered at atoms of neighbouring C X 2 units. We stress that these differences are 
hardly observable in direct studies of the electron density in position space, and 
momentum-space studies thus offer a valuable alternative to obtain information 
about the electronic orbitals. 

Spin-Orbit Couplings and B i s m u t h Chains . Recently Romanov succeeded 
in synthesizing thin Bi wires inside the channels of a mordenite crystal (31). Sub
sequent x-ray scattering experiments provided some information on the structure 
and additional information was obtained through optical experiments. However, 
for the latter he was completely lacking reference data and compared therefore 
with free-atom data. In order to study this approximation in more detail and 
to get additional information on the system we have performed calculations on 
various Bi chains (32). But since Bi is a heavy atom, the inclusion of relativis-
tic effects, including spin-orbit couplings, becomes important when discussing 
optical properties. 

The general spin-orbit Hamilton operator is given through 

The dependence of Hso on V V makes it a good approximation to consider only 
that part of space where this term is large, i.e. the region close to the nuclei. 
Moreover, since the dominating part of the potential here is spherically symmet
ric we shall only include that part (cf. Figure 2a). We accordingly end up with 
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the following approximate expression 

H so — 
ι dvn,v»,o)(r) ι 

dr V4M 
(12) 

which is considered non-zero only inside the muffin-tin spheres. 
As a first approximation we have included the Hamilton operator of equation 

(11) only perturbatively. I.e., we have only added it in calculating the band 
structures once the Kohn-Sham equations have been solved self-consistently. 

(a ) (b) 

Figure 14. Band structure (a) with
out and (b) with the inclusion of spin-
orbit couplings for a linear Bi chain 
with B i - B i bond lengths of 5.6 a.u. 

Figure 14 shows the band structures for a linear chain of Bi atoms with a 
B i - B i interatomic distance set equal to a typical value of 5.6 a.u. It is seen that 
the bands split up into three groups, of which the lowest one (around -25 - -30 
eV) is due to mainly bd functions, the next one (at -15 eV) to 6s functions, 
and last group is due to 6p functions. We see that the 6s functions are not 
affected by the spin-orbit couplings, as is well known, whereas the 5d bands split 
as much as 3-4 eV. The 5d bands are moreover very flat, indicating that these 
orbitals are well localized to the atoms, so that they are expected to have large 
matrix elements for Hso. However, the 6p functions are also split by the spin-
orbit couplings, although their larger band widths indicate considerably smaller 
localization. Finally, the large width of these bands show that it is not a good 
approximation to compare results of optical experiments with electronic levels of 
single atoms. This is even more pronounced when considering other quasi-one-
dimensional forms of Bi chains, for which the atoms have a higher coordination 
(32). 

D o p e d Chains . In a number of cases the chains are doped. This is the case 
for some of the so-called M X chains that are a part of a crystal and that are 
surrounded by oppositely charged counterions [see, e.g., (13)]. Also for some of 
the systems already discussed in this contribution charged states are relevant, 
e.g., some of the defect-containing structures of the conjugated polymers and the 
hydrogen-bonded chains. It is accordingly desirable to be able to study doped 
chains, too. 

The main problem when studying these theoretically is that when consid
ering periodic structures, a periodically repeated non-vanishing charge will lead 
to a diverging electrostatic potential. Thus, the charge has to be compensated 
somehow, if periodicity is retained. This could, e.g., be done by placing extra 
point charges at certain points but it leaves the arbitrariness of choosing their 
positions. For three-dimensional crystalline materials a constant background 
density forms a useful approach but for the quasi-one-dimensional chains the 
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volume of the three-dimensional unit cell is infinite leading to a vanishing back
ground density. 

As an alternative we have chosen to add constant background densities inside 
the muffin-tin spheres only (33). Their values are determined so that the total 
background density of each sphere is the same for all spheres. These extra charge 
densities can be easily taken into account in the calculation with a procedure 
almost equivalent to the one used for the frozen-core density and the nuclei. 

In preliminary studies we have applied this approach on a linear carbon 
chain (33). The neutral linear carbon chain with all C - C bond lengths equal has 
a half-filled, doubly degenerate π band around the Fermi level. A dimerization 
(bond-length alternation) lowers the total energy and opens up a gap at the Fermi 
energy. This Peierls' mechanism is completely analogous to that observed for 
trans polyacetylene. For the doped chain it may, however, be (partly) suppressed 
since the dimerization does not lead to the occurrence of a gap at the Fermi level. 
We studied this by considering linear chains with two C atoms per unit cell and 
with a unit-cell length equal to 2.64 Â. Moreover, we monitored the relative total 
energy as a function of the size of an alternating displacement of the C atoms 
along the polymer axis. The results are shown in Figure 15. 

0.1 0.2 0.3 0.4 0. 
Dimerization amplitude (a.u.) 

0 0.1 0.2 0.3 0.4 0.5 
Dimerization amplitude (a.u.) 

Figure 15. Relative total energy per C2 unit for various linear doped C chains 
as a function of the displacement of the atoms relative to the undimerized 
structure. The labels give the number of electrons (in fractions of one per C2 
unit) added to (left panel) and removed from (right panel) the chains. 

Figure 15 shows that the dimerization reduces as charge is added to the 
chains. However, although no gap appears at the Fermi level for any of the doped 
chains independent of the dimerization, the dimerization does not disappear 
abruptly when charging the system. For the neutral system, the dimerization 
leads to a stabilization of occupied orbitals and a destabilization of unoccupied 
orbitals, but from a total-energy point of view the latter is unimportant. When 
adding electrons, the destabilization, however, becomes important, but it can 
only partly compensate the stabilization, so that the dimerization is not com
pletely suppressed. An equivalent picture also holds when removing electrons, 
although Figure 15 clearly shows that there is an asymmetry between positively 
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and negatively doped chains. In total, this explains why the dimerization is 
reduced but not removed for the doped chains. 

Conclusions 

In the present contribution we have briefly reviewed a density-functional method 
for the calculation of electronic properties of helical polymers and have given 
some examples of applications. The materials of interest are both finite (in 
two dimensions) and infinite (in one dimension), which leads to considerable 
complications in the computational scheme. Moreover, for the general helical 
polymer it is necessary (and a simplification, too) to work with functions defined 
in local atom-centered coordinate systems. 

The examples were mainly chosen from our most recent work, thereby illus
trating the 'state of the art'. For a more detailed, but less recent, review, the 
reader is referred to (34). 

Some of the important issues at the moment are to be able to calculate forces, 
which will make geometry optimizations orders of magnitude simpler. Further
more, applying constrained density-functional calculations in order to estimate 
parameters for (extended) Hubbard models is highly relevant, as was most clearly 
demonstrated in our discussion of polythiophene. And, finally, further studies of 
the effects of distortions (for instance due to structural defects or extra charges) 
are very desirably. 
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Chapter 9 

Structures and Interaction Energies of Mixed 
Dimers of NH3, H 2 O , and H F 

by Hartree-Fock, Møller—Plesset, 
and Density-Functional Methodologies 

Carlos P. Sosa1, John E. Carpenter1, and Juan J. Novoa2 

1Cray Research, Inc., 655 E. Long Oak Drive, Eagan, MN 55121 
2Department de Quimica Fisica, Facultat de Quimica, 

Universitat de Barcelona, Av. Diagonal 647, Barcelona 08028, Spain 

The intermolecular interaction energies for hydrogen-bonded 
complexes have been investigated using Hartree-Fock (HF), Møller-
Plesset (MP2) and density functional theory (DFT). Interaction 
energies were computed for the following complexes: NH3--NH3, 
NH3--H2O, NH3--HF, H2O--H2O, H2O--HF, and HF--HF. Pople's 
split valence (6-31++G(2d,2p)) basis sets were employed throughout 
these calculations. The predicted interaction energies for these 
complexes using the B3-LYP hybrid method (without ZPE and BSSE) 
are: -4.02, -7.15, -14.26, -4.97, -9.30, and -4.73 kcal/mol, respectively. 
Charge transfer computed using the natural bond order (NBO) scheme 
suggests that the local density approximation tends to overestimate the 
amount of charge transferred between donor and acceptor when 
compared to MP2 results. 

Density functional theory (DFT) started to be successfully applied to molecular 
problems in mid 1980's. Slater ( /) pioneered the idea of the electron-gas 
approximation as a simplification of the Hartree-Fock equations. Methods such as 
the so-called Χα method have been widely used in band structure calculations (2). 
However, it was not until the mid 1960's when Kohn, Hohenberg, and Sham (3-4) 
provided the foundation of what is now widely accepted as density functional theory. 
They showed that density functional theory is a many-body theory that can stand in 
the same footing as more conventional theories such as Hartree-Fock and post-
Hartree-Fock methods. 

Density functional theory (5-7), offers a promising tool that may be applied to 
large systems. It includes correlation effects in a form in which the cost is only N 3 ; 
where Ν is the number of basis functions. In practice, the scaling can be lower (8). 
Also, because of recent developments of analytic gradient techniques, progress in 
functionals for gradient corrections to the local spin density approximation (LSD) (3-

0097-6156/96/0629-0131$15.00/0 
© 1996 American Chemical Society 
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132 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Ο, and the availability of versatile software, density functional theory is becoming a 
popular tool in chemistry (9). Calculation of thermodynamic data for polyatomic 
molecules (10-15) shows that the gradient-corrected functionals provide energetics 
typically better than the HF method. The gradient-corrected results are closer to 
correlated methods (e.g., MP2), or better (76*). Also, in recent papers (13-15,17-18), 
we presented systematic studies using density functional methods for bond 
dissociation, rotational barriers and transition structures. However, prediction of 
barrier heights in some cases has turned out to be more problematic. For example, 
the predicted DFT barrier heights for ethylene + butadiene (Diels-Alder) is much too 
low (with and without gradient corrections) suggesting that charge transfer may play 
an important role in strongly interacting systems (18). 

In a further test of this hypothesis, we have carried out a series of calculations on 
dimers of three hydrogen bonding molecules (17). In the present study we want to 
extend our studies to include dimers selected to cover interaction energies between 
N H 3 and NH3, H 2 0 , and HF, H 2 0 and H 2 0 and HF, and finally HF interacting with 
HF. The goal of this work has been (a) to establish how well the S-VWN, B-LYP, 
and B3-LYP reproduce the MP2 interaction energy using the 6-31++G(2d,2p) basis 
sets, (b) how the optimum energy structures computed using DFT compares with the 
predicted structures at the MP2 level and (c) how charge transfer in DFT compares 
toMP2. 

Computational Section. 

First principles calculations were carried out using the Gaussian 92/DFT program 
(19) on a Cray C90. The Kohn-Sham equations were solved as described by Pople 
and co-workers (8). The Coulomb and exact exchange integrals were evaluated 
analytically. All the integrals for the approximate exchange and correlation 
contributions to the energy were carried out over a numerical grid (20). 

In the present study we have tested within the local spin density (LSD) 
approximation the combinations: Slater-Dirac (S) exchange (7, 21) and Vosko, Wilk, 
and Nusair (VWN) correlation functional (22) (S-VWN). Gradient corrections were 
introduced using Becke (23) exchange with the Lee, Yang and Parr (24) correlation 
(B-LYP). The LYP correlation is the density functional energy formulation of the 
Colle-Salvetti correlation energy (25). We have also tested Becke's three parameter 
hybrid functional with gradient corrections provided by the LYP functional (B3-
LYP) (26-27). 

All the calculations for the NH3, H 2 0 , and HF dimers have been performed with 
Pople's split-valence 6-31-H-G(2d,2p) (these basis sets include diffuse functions on 
heavy and hydrogen atoms, the polarization function space consists of two d's on 
heavy atoms and two p's on hydrogen) (28-30) basis sets. All equilibrium geometries 
were fully optimized with analytical gradient methods at the HF, MP2 , and DFT 
levels. The interaction energies were computed as the difference between the 
complex and the monomers. Harmonic vibrational frequencies were carried out for 
all the complexes. Only the zero-point energy (ZPE) corrections are presented in this 
study. 
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9. SOSA ET AL. Structures and Interaction Energies 133 

The method of natural bond orbital (NBO) analysis was employed to study 
charge transfer. As previously pointed out, the NBO technique uses information 
from diagonalizing the atomic sub-blocks of the density matrix (57). This procedure 
involves the orthogonalization of the atomic orbital basis to form the natural atomic 
orbitals, and a bond orbital transformation from the natural atomic orbitals to the 
final natural bond orbitals. 

Results and Discussion. 

The geometries for these complexes were predicted using density functional 
methods. All the optimized geometries were compared with conventional ab initio 
methods. Hartree-Fock and MP2 have been extensively employed in many chemical 
studies (32). They provide a very reliable way to calibrate density functional 
methods applied to chemical reactions and specially to weakly-bound complexes (33-
37). 
The calculated geometries for this series of hydrogen bond complexes are presented 
in Table I. In this section we only summarize our results using DFT. Figure 2 
illustrates all the parameters used throughout these calculations for the NH3, H 2 0 , 
and HF mixed dimers. Table Π shows all the interaction energies, charge transfer 
and dipole moments. 

Geometries. 

The prediction of the structure of the ammonia dimer has proven to be a difficult task 
(38-47). Three structures have mainly been suggested as the equilibrium geometry 
of this dimer. The first structure corresponds to the classical structure as defined by 
Nelson et al. (41) (Figure la). In this approach one of the N-H bonds is collinear 
with the C3 axis of the other NH3 molecule. One with Cs symmetry (47) (Figure 
lb), and the other structure corresponds to a cyclic structure with C2h symmetry(40) 
(Figure lc). Recently, Tao and Klemperer (43) have investigated the equilibrium 
geometry of the NH3-NH3 dimer using 6-311+G(3d,2p) and [7s5p3d,4slp] extended 
with bond functions at the Hartree-Fock and MPn levels. They concluded that when 
the basis sets are enlarged with bond functions the C2h structure becomes more 
stable. On the other hand, basis sets without bond functions predict the Cs structure 
to be more stable. Recently, Muguet and Robinson (45-46) have reported a new 
method to correct the basis sets superposition error. In their study they carry out an 
extensive analysis of the BSSE for die NH3—NH3 dimer and presented a section 
discussing Tao and Klemperei^s (43) work. The objective of the present study is 
mainly to asses the difference in charge transfer between DFT and MP2 calculations 
for this series of mixed dimers . 

Three different type of dimers containing ammonia are presented in Table I. 
The predicted r (See Figure 2) distance at the Hartree-Fock level (not shown in Table 
I) for NH3--NH3, NH3-H2O, and NH3--HF are 3.484, 3.092, and 1.809 A , 
respectively. The effect of correlation corrections at the MP2 level is to shorten the r 
distance by about 0.1 to 0.2 Â. On the other hand, density functional theory using S-
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Table I. Optimized geometries for all the complexes1 

Level NH3-NH3 NH3-H2O NH3-HF H 2 0 - H 2 0 H 2 0-HF HF-HF 

MP2 r 3.240 2.927 1.674 2.901 1.702 2.726 
r(HaX) 1.016 0.974 0.957 0.968 0.938 0.923 
r(HbX) 1.013 1.013 1.013 
r(HcX) 1.013 1.013 0.961 0.961 0.926 
6a 125.7 117.9 111.9 109.0 113.0 

6b 19.4 6.4 0.0 5.3 0.0 6.3 

Qc 73.8 99.6 111.8 110.0 

0d 107.0 104.9 104.6 
S-VWN r 2.985 2.739 1.523 2.712 1.538 2.548 

r(HaX) 1.037 1.002 0.996 0.989 0.969 0.948 
r(HbX) 1.024 1.024 1.023 
r(HcX) 1.023 1.023 0.972 0.973 0.937 

6a 123.9 117.0 111.0 103.8 110.2 

0b 15.1 6.6 0.0 6.7 0.0 8.0 

Gc 80.3 99.1 111.0 

0d 107.8 106.0 
B-LYP r 3.325 2.944 1.654 2.942 1.696 2.758 

r(HaX) 1.030 0.991 0.981 0.982 0.958 0.942 
r(HbX) 1.025 1.024 1.024 
r(HcX) 1.025 1.025 0.974 0.974 0.937 

0a 120.0 105.7 111.1 107.8 111.9 

Ob 8.6 5.1 0.0 5.0 0.0 6.6 

9c 95.0 123.6 112.1 109.4 

9d 106.8 104.8 104.7 
B3-LYP r 3.295 2.933 1.660 2.916 1.690 2.725 

r(HaX) 1.021 0.978 0.964 0.976 0.944 0.931 
r(HbX) 1.016 1.015 1.016 0.926 
r(HcX) 1.016 1.016 0.963 0.964 

Oa 121.0 105.4 111.7 108.2 113.3 

Ob 10.2 5.0 0.0 4.8 0.0 6.8 

9c 90.7 123.4 111.2 109.8 

6d 107.4 105.5 105.2 

lBond length in Â; angles in degrees. 
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(a) (b) (c) 

(d) (e) 

Figure 1. (a) Classical Structure, (b) Cs Symmetry, (c) Cyclic 
Structure, (d) Eclipsed Structure, (e) Staggered. 

H 

H b 

H . . i H v ; ». t l « "* f i ' 

H , 

H b H c H b 

Figure 2. Optimized parameters for this series of complexes. 
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VWN (local approximation) tends to underestimate the r distance when compared to 
Hartree-Fock or MP2 calculations. S-VWN underestimates the r distance between 
0.2 to about 0.3 Â for these three ammonia complexes. Gradient corrections play an 
important role. The B-LYP functional that contains gradient corrections for the 
exchange and correlation terms predicts an r distance in close agreement to MP2 
results. The calculated B-LYP r distances are: 3.325, 2.944, and 1.654 Â for NH3-
NH3, NH3--H2O, and NH3--HF, respectively. Similar results are obtained using the 
hybrid functional (B3-LYP). 

In general, all the DFT parameters for these three complexes are in good 
agreement with MP2 results. In the case of NH3-H2O, we have identified two 
conformers, one conformer has the Ha-0 bond eclipsed with respect to Hb-N bond 
(Figure Id) and a second structure has these two bonds staggered (Figure le). 
Hartree-Fock favors the eclipsed structure while MP2 and DFT predict the staggered 
structure to be the most stable. 

Microwave and radio frequency spectra for NH3--H2O have reported a 
vibrationally averaged distance (N--0) of 2.983 Â (48). Also, previous ab initio 
calculations (49-52) at the Hartree-Fock level using 6-31G* and 4-31G basis sets 
have predicted distances (N--0) of 3.05 and 2.95 Â, respectively. These results are 
in agreement with our Hartree-Fock results (not shown in Table I). On the other 
hand, MP2, B-LYP, and B3-LYP tend to shorten this distance and predict values 
within experimental uncertainty. 

Tables I also summarizes all the optimized geometries (See Figure 2) for H2O--
H2O, H2O-HF, and HF—HF dimers. All these structures were optimized using the 
6-31++G(2d,2p) basis sets. This basis set were selected based on previous 
experience with the HF--HF dimer (17 ). Calculated interaction energies and BSSE 
computed with aug-cc-pVTZ and 6-31++G(2d,2p) have been found in good 
agreement (17). We have recently carried out a comparison between ab initio 
conventional methods and DFT for H2O and HF dimers (77). In this section we only 
summarize some of the trends as a function of mixed dimers. 

Recently, Feller (53) and Kim and Jordan (54) have also extensively studied the 
H2O—H2O dimer using Hartree-Fock and post-Hartree-Fock methods as well as 
DFT. Kim and Jordan (54) have reported good agreement between the predicted B3-
LYP geometries and the MP2 and experimental geometries. Examination of the 
results in Table I indicates considerable changes in the r distance at the DFT level as 
different functionals are compared (77). Adding gradient corrections to the local 
approximation functional tend to elongate the r distance. In all the cases S-VWN 
underestimates the r distance when compared to MP2 values. 

All the optimized geometries for the HF--HF dimer are collected in Table I. All 
our results obtained using MP2 are in good agreement with previous calculations at 
similar levels of theory (77). In the case of the HF--HF dimer (See Figure 2), DFT 
calculations tend to have a marked basis set effect. This is particularly true for the r 
distance (77). In general, S-VWN underestimates the r distance and B-LYP and B3-
LYP brings the predicted DFT geometries in good agreement with MP2 results. 

Similar to the ammonia dimers, replacing H2O in the water dimer with a 
stronger donor (HF) tends to decrease the r distance. Experimentally, the r(F—O) 
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distance has been reported to be 2.66 À (52). The predicted S-VWN value of 2.506 
Â clearly underestimates the experimental results. On the other hand, MP2, B-LYP, 
and B3-LYP predict r(F-0) distances that are ± 0.03 Â within experimental result. 

Energetics. 

Previously, we reported basis set effects and interaction energies with and without 
counterpoise corrections for HF-HF, H2O-H2O, NH3-NH3, C2H2-H2O, and CH4-
-H2O (77). All the interaction energies computed with the 6-31-H-G(2d,2p) basis sets 
were found to be in good agreement with energies obtained using aug-cc-pVTZ basis 
sets. The BSSE error for these systems with large basis sets is less than 1 kcal/mol. 
Therefore, all the interaction energies presented in this work do not include BSSE. 
On the other hand, smaller basis sets without diffuse functions do not describe these 
interactions properly (77). It was also found that DFT tends to be more susceptible 
to the basis sets truncation than conventional methods such as MPn (77). In contrast 
to our previous study, here we report MP2 and DFT calculations for NH3—Χ, H2O--
X, and HF--X where X corresponds to NH3, H2O, and HF. This provides a 
systematic study of interaction energies and charge transfer as a function of different 
substituents for NH3, H20, and HF dimers. Figure 3 illustrates a qualitative matrix 
of interactions for the set of dimers presented in this study. For this series of mixed 
dimers, we have looked at the effect of charge transfer using DFT and MP2 methods 
for weak, moderate, and strong interactions. 

Interaction energies (ΔΕ), charge transfer (nCT), and dipole moments (μ) for all 
the dimers are collected in Table II . The first series of dimers correspond to NH3-
NH3, NH3-H2O, and NH3--HF. The ordering of the interaction energies for these 
ammonia complexes increases as the dipole moment of the substituent increases, that 
is, HF > H2O > NH3. Inspecting Table I I reveals that S-VWN (local approximation) 
overestimates the interaction energy when compared to MP2 results. On the other 
hand, B-LYP and B3-LYP give results that are consistent with MP2. B-LYP and B3-
LYP predict interaction energies that are only within 1 kcal/mol error compared to 
MP2. 

In addition to the NH3 series of dimers, Table I I also provides energies for H2O-
-H2O and H2O--HF. These two dimers may be analyzed in a similar fashion as the 
NH3 dimers. As it would be expected from the previous series, H2O--HF shows a 
stronger interaction than H2O—H2O. Similar trends may be observed for these 
dimers. S-VWN clearly overestimates the interaction energy between 4 to 6 
kcal/mol when compared to all the other methods presented in Table I I . The 
interaction energy of the H2O--H2O dimer has been deduced from experimental data 
to be 5.410.7 (55 ) and 5.4±0.2 kcal/mol (56) (vibrational and temperature effects 
have been subtracted). Recent calculations for this interaction energy at the B3-
LYP/aug-cc-pVTZ has been reported to be -4.57 kcal/mol (54 ). MP2 calculations 
using large basis sets have provided estimates of the H2O-H2O interaction energy in 
the range of-4.7 to -5.1 kcal/mol (77, 47, 53, 54). The predicted B-LYP and B3-
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Table Π. Calculated Interaction Energies, Charge Transfer,and Dipole Moments1'3. 

Level ΝΗ3-ΝΗ3 ΝΗ 3 -Η 2 0 NH 3-HF Η 2 0 - Η 2 0 H 2 0-HF HF-HF 

MP2 ΔΕ -4.48 -7.44 -13.93 -5.40 -9.31 -4.83 
nCT 0.00671 0.03076 0.07484 0.01935 0.03963 0.0754 

μ 1.86 3.61 4.72 2.75 4.24 3.51 

ΔΖΡΕ 1.38 2.25 1.69 2.26 2.94 1.92 

S-VWN ΔΕ -6.54 -12.03 -21.03 -9.49 15.23 -8.76 
nCT 0.031410 0.06753 0.12355 0.04588 0.0768 0.0420 

μ 2.38 3.96 5.22 2.68 4.55 3.44 

ΔΖΡΕ 1.60 2.31 3.01 2.45 2.94 2.07 

B-LYP ΔΕ -3.59 -6.81 -14.07 -4.58 -8.92 -4.39 
nCT 0.01358 0.03792 0.09063 0.02184 0.04849 0.0203 

μ 2.63 3.69 4.86 2.64 4.27 3.37 

ΔΖΡΕ 1.36 2.31 2.96 2.08 2.78 1.78 

B3-LYP ΔΕ -4.02 -7.15 -14.26 -4.97 -9.30 -4.73 
nCT 0.01219 0.03350 0.08189 0.01967 0.04324 0.0187 

μ 2.49 3.67 4.81 2.60 4.32 3.39 

ΔΖΡΕ 1.38 2.28 3.03 2.18 2.83 1.84 

interaction and zero-point energies in kcal/mol. 
2Charge transfer corresponds to the number of electrons transfered from donor to 
acceptor. 
3Dipole moment in Debye. 

AcceptorVDonor 

N H 3 

H 2 0 

H F 

N H 3 H 2 0 H F 

weak 

moderate weak 

strong moderate weak 

Figure 3. Qualitative interaction matrix. 
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LYP interaction energies are: -4.58 and -4.97 kcal/mol, respectively. These results 
are consistent with previous DFT studies on the H2O--H2O dimer (57). 

In the case of H2O—HF, the estimated experimental interaction energy 
(vibrational and temperature effects have been subtracted) corresponds to 7.17 ± 1.6 
kcal/mol (58). Our predicted MP2, B-LYP, and B3-LYP are within the upper limit 
of the estimated experimental value. 

In addition to the two previous series of complexes, Table I I also summarizes 
interaction energies, charge transfer, and dipole moments for the HF--HF dimer. In 
this case, Pine and Howard (59) have estimated the interaction to be -4.56 (+0.29, -
0.27) kcal/mol. Michael et al. (60) have reported a theoretical interaction energy of -
4.55 kcal/mol. It is not surprising, S-VWN overestimates this interaction as well. B-
LYP and B3-LYP interaction energies are: -4.39 and -4.73 kcal/mol, respectively. 
Both in good agreement when compared to previous theoretical results and our MP2. 

A manifestation of the behavior of the interaction energies may be observed in 
the amount of charge transfer as a function of the method. In the cases of NH3 and 
H2O dimers, the decrease of the r distance presumably reflects cooperative efforts as 
the dipole of the substituent increases. For example, NH3 is a better electron donor 
than H 2 0 or HF, for N H 3 - H 2 0 , NH3--HF, H 2 0 - H 2 0 , and H 2 0-HF, it is expected 
that the dimers containing NH3 will show a stronger hydrogen bond. This type of 
trend may also be observed for H2O--HF and HF—HF, where H2O is a better donor 
than HF, and a stronger hydrogen bond for the H2O--HF case is expected as well. 

In general, DFT appears to qualitatively reproduce these observations, however, 
a more careful analysis of the charge transfer indicates that DFT tends to 
overestimate the amount of charge that has been transferred between donor and 
acceptor. This is particularly true for the local approximation. Examination of Table 
I I indicates that S-VWN tends to overestimate the charge transfer in all the 
complexes studied here. In other words, it favors more charge transfer and more 
repulsion can be overcome. This effect may be responsible for the underestimation 
of the r distance using the local approximation (S-VWN) for all these dimers. 

The effect of gradient corrections is to bring the value of nCT in closer 
agreement with MP2 results. B-LYP tends to correct the overestimation of the 
charge transfer (nCT) at the local density approximation, in some cases by as much 
as a factor of two. B3-LYP predicts charge transfer in even closer agreement to MP2 
results. The largest discrepancies correspond to the NH3--NH3 and HF--HF, where 
B-LYP and B3-LYP still overestimate the amount of charge transfer when compared 
toMP2. 

Acknowledgments 

We thank the management of Cray Corporate Network for his generous allocation of 
computer time in the Cray C-90 and Y-MP machines. JJN also thanks the "Fundacio 
Catalana per a la Recerca" (Catalunya, Spain) for making possible his visit to Cray 
Research and the Spanish DGICYT for its continuous support under Project PB92-
0655-C02-02. 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
00

9

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



140 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Literature Cited. 

1. Slater, J. C. Phys. Rev. 1951, 81, 385. 
2. Slater, J. C. The Self-Consistent Field for Molecules and Solids, Quantum Theory 

of Molecules and Solids, McGraw-Hill: New York, NY, 1974, Vol. 4. 
3. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, B136, 864. 
4. Kohn, W.; Sham, L. J. Phys. Rev. 1965, A140, 1133. 
5. Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, 

Oxford University Press: New York, NY, 1989. 
6. Levy, M.; Proc. Natl. Acad. Sci. (USA) 1979, 76, 6062. 
7. Jones, R. O.; Gunnarsson, O. Reviews of Modern Physics 1990, 61, 689. 
8. Johnson, B. G.; Gill, P. M. W. Pople, J. A. J. Chem. Phys. 1993, 98, 5612. 
9. Ziegler, T. Chemical Review 1991, 91, 651. 
10. Becke, A. D. J. Chem. Phys. 1986, 84, 4524. 
11. Becke, A. D. The Challenge of d and f Electrons: Theory and Computation; ACS 

Symposium Series No 394; ACS: Washington D. C., N.H., 1989. 
12. Becke, A. D. J. Chem. Phys. 1988, 88, 2547. 
13. Andzelm, J.; Sosa, C.; Eades, R. A. J. Phys. Chem. 1993, 97, 4664. 
14. Sosa, C.; Andzelm, J.; Lee, C.; Blake, J. F.; Chenard, B. L.; Butler, T. W. Int. J. 

Quantum Chem. 1994, 49, 511. 
15. Sosa, C.; Lee, C. J. Chem. Phys. 1993, 98, 8004. 
16. Wimmer, E.; Andzelm, J. J. Chem. Phys. 1992, 96, 1280. 
17. Novoa, J. J.; Sosa, C. J. Phys. Chem. 1995, 99, 15837. 
18. Carpenter, J. E.; Sosa, C. J. Mol. Structure (THEOCHEM) 1994, 311, 325. 
19. Gaussian 92/DFT, Revision G.3, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; 

Gill, P. M. W.; Johnson, B. G.; Wong, M. W.; Joresman, J. B.; Robb, M. A.; 
Head-Gordaon, M.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, 
K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; DeFrees, D. J.; Baker, 
J.; Stewart, J. J. P.; Pople, J. A. Gaussian, Inc: Pittsburgh PA, 1993 . 

20. Johnson, B. G.; Frisch, M. J. Chem. Phys. Lett. 1993, 216, 133. 
21. Dirac, P. A. M. Proc. Cambridge Phil. Soc. 1930, 26, 133. 
22. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. 
23. Becke, A. D. Phys. Rev. 1988, A38, 3098. 
24. Lee, C; Yang, W.; Parr, R. G. Phys. Rev. 1993, B37, 785. 
25. Colle, R.; Salvetti, D. Theor. Chim. Acta 1975, 37, 329. 
26. Frisch, M. J.; Frisch, AE.; Foresman, J. B. Gaussian 92/DFT User's Reference 

Release Notes, Gaussian, Inc: Pittsburgh PA, 1993. 
27. Becke, A. D. J. Chem. Phys. 1993, 98, 1372; 1993, 98, 5648. 
28. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. 
29. Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209. 
30. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comp. 

Chem. 1983, 4, 294. 
31. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 2257. 
32. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular 

Orbital Theory; John Wiley & Sons: New York, NY, 1986. 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
00

9

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



9. SOSA ET AL. Structures and Interaction Energies 141 

33. Buckingham, A. D.; Fowler, P. W.; Hutson, J. M.. Chem. Rev. 1988, 88, 963 and 
references therein. 

34. Hobza, P.; Zahradnik, R. Intermolecular Complexes; Elsevier: Amsterdam, The 
Netherlands, 1988. 

35. Chalasinski, G.; Gutowski, M. Chem. Rev. 1988, 88, 943. 
36. Liu, B; McLean, A. D. J. Chem. Phys. 1989, 91, 2348 and references therein. 
37. Scheiner, S. Reviews in Computational Chemistrsy; VCH: New York, NY, 1991, 

Vol. 2, pp. 165. 
38. Sagarik, K. D.; Ahlrichs, R.; Brode, S. Mol. Phys. 1986, 57, 1247. 
39. Hassett, D. M..; Marsden, C. J.; Smith, B. J. Chem. Phys. Lett. 1991, 183, 449. 
40. Latajka, Z.; Scheiner, S. J. Chem. Phys. 1986, 84, 341. 
41. Nelson, D. D., Jr.; Fraser, G. T.; Klemperer, W. J. Chem. Phys. 1985, 83, 6201. 
42 Nelson, D. D., Jr.; Klemperer, W.; Fraser, G. T.; Lovas, F. J.; Suenram, D. J. 

Chem. Phys. 1987, 87, 6364. 
43. Tao, F-. M.; Klemperer, W. J. Chem. Phys. 1993, 99, 5976. 
44. Olfhof, E. H. T., Van der Avoird, A.; Wormer, P. E. S. J. Chem. Phys. 1994, 

101, 8430. 
45. Muguet, F. F.; Robinson, G. W. J. Chem. Phys. 1995, 102, 3648. 
46 Muguet, F. F.; Robinson, G. W.; Basses-Muguet, M. P. J. Chem. Phys. 1995, 

102, 3655. 
47. Frisch, M. J.; Del Bene, J. E.; Binkley, J. S.; Schaefer III, H. F. J. Chem. Phys. 

1986, 84, 2279. 
48. Herbine, P.; Dyke, T. R. J. Chem. Phys. 1985, 83, 3768. 
49. Dill, J. D.; Allen, L. C.; Tropp, W. C.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 

7220. 
50. Kollman, P. Α.; Allen, L. C. J. Am. Chem. Soc. 1971, 93, 4991. 
51. Lathan, W. Α.; Curtiss, L. Α.; Hehre, W. J.; Lisle, J. B.; Pople, J. A. Prog. Phys. 

Org. Chem. 1974, 11, 175. 
52. Bevan, J. W.; Kisiel, Z.; Legon, A. C.; Miller, D. J.; Rogers, S. C. Proc. R. Soc. 

London Ser. 1980, A372, 441. 
53. Feller, D. J. Chem. Phys. 1992, 96, 6104. 
54. Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089. 
55. Curtis, L. A.; Frurip, D. J.; Blander, M J. Chem. Phys. 1979, 71, 2703. 
56. Raimers, J.; Watts, R.; Kein, M. Chem. Phys. 1982, 64, 92. 
57. Xantheas, S. S. J. Chem. Phys. 1995, 102, 4505. 
58. Thomas, R. K. Proc. R. Soc. London Ser. 1975, A344, 579. 
59. Pine, A. S.; Howard, B. J. J. Chem. Phys. 1986, 84, 590. 
60. Michael, D. W.; Dykstra, C. E.; Lisy, J. M. J. Chem. Phys. 1984, 81, 5998. 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
00

9

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



Chapter 10 

Free Energy Perturbation Calculations 
Within Quantum Mechanical Methodologies 

Robert V. Stanton, Steven L. Dixon, and Kenneth M. Merz, Jr. 1 

Department of Chemistry, 152 Davey Laboratory, Pennsylvania State 
University, University Park, PA 16802 

Newly developed techniques for use in quantum free energy and 
potential of mean force calculations are presented. These techniques 
are the first to provide a direct means of performing arbitrary 
perturbations in single-topology quantum mechanical systems. The 
theoretical and practical considerations for carrying out the 
associated molecular dynamics simulations are discussed. 
Simulations are conducted for systems that are purely quantum 
mechanical, and for systems that involve a combination of quantum 
mechanical and molecular mechanical atoms. Preliminary results 
demonstrate these procedures to constitute a powerful tool in free 
energy calculations, with the potential to significantly increase the 
accuracy of simulations on both large-scale and small-scale systems. 

Free energy perturbation (FEP)(l-3) and potential of mean force (PMF)(4, 5) 
calculations within molecular mechanical ( M M ) force fields have proven to be two 
of the most powerful computational methodologies available. These techniques, 
which have been developed and refined over the last two decades, allow access to 
important thermodynamic quantities, such as the relative binding free energies of 
ions within an ionophore(6), or inhibitors to an enzyme.(7) While other techniques, 
such as linear response theory(8), have been developed to calculate these same 
quantities they may require additional parameterization. F E P and P M F calculations, 
in contrast, are done using statistical averages of the energy differences between the 
various intermediate states considered in the calculation and thus may be applied to 
any system for which a potential energy surface is known. Many elegant 
applications of these theoretical techniques within molecular dynamics ( M D ) 
calculations currently exist within the literature.(4, 5,7,9-14) 

Recently, quantum mechanical (QM) MD(15-18), as well as coupled 
potential M D ( 19-22) calculations have become computationally practical. In such 
calculations a system is modeled using a Q M Hamiltonian, within the Born-
Oppenheimer approximation, and is propagated classically through time using 
Newtonian mechanics. Coupled potentials (CP), in addition to the Q M portion of 

1Corresponding author 

0097-6156/96/0629-0142$15.00A) 
© 1996 American Chemical Society 
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10. STANTON ET AL. FEP Calculations 143 

the system, also include atoms which are modeled molecular mechanically. The 
division of a large system into Q M and M M portions allows for a portion of the 
system to be modeled using the more accurate Q M potential function while still 
including environmental effects from the M M portion of the system. Typically, the 
Q M calculation involves a region of particular interest such as the solute within a 
solvent system or the active site within an enzyme. Ideally the entire system would 
be modeled using quantum mechanics, however due to the scaling of the 
computational expense of Q M calculations with the size of the system (between n^ 
and rP, where η is the number of basis functions) fully Q M representations of large 
systems remain impractical. 

Wi th the increased use of quantum mechanics for M D simulations, a natural 
extension of these simulations is their use with F E P and P M F calculations. 
Unfortunately, though, the extrapolation of the F E P and P M F methods used within 
M M calculations to Q M potentials is not as straightforward as might be hoped. In a 
M M F E P calculation the relative free energy difference between two states is 
calculated by slowly perturbing the parameters appropriate for one state into those 
of the other. For example, i f a ketone group were being perturbed into an alcohol, 
the bond, angle, torsional, and van der Waals (vdW) parameters as well as the 
atomic charges, would be coupled to a perturbation parameter λ such that λ =1 
corresponds to the ketone and λ = 0 the alcohol. Two approaches are available for 
the calculation of the intermediate states. These are referred to as the single and 
dual topology methods. In the dual topology method the forces and energy of the 
fractional lambda state are generated by weighted averages of these values from 
independent calculations at λ = 1 and λ = 0. The single topology method, 
alternatively, uses weighted averages of the parameter values to calculate forces and 
energy. A study contrasting the single and dual topology methods showed the 
single topology method to converge more quickly than the dual in many cases.(23) 

If single topology methods are to be used within Q M systems techniques 
must be developed which allow for the calculation of systems corresponding to 
fractional values of the perturbation parameter. Four possible system perturbations 
can be defined within Q M - F E P calculations: 1) changing an atom type.; 2) changing 
the number of atoms; 3) changing the number of electrons; and 4) changing the 
number of atomic orbital basis functions. Perturbations between systems can, and 
usually do, incorporate many of these changes simultaneously. Recently, within our 
lab we have developed methods allowing for each of these four types of 
perturbations. We w i l l outline these methods and the results of test calculations in 
the remainder of this paper. 

A n alternative method for the calculation of FEPs within Q M and C P 
systems has been demonstrated by Warshel and Wesolowski.(24) In these 
calculations they determine the free energy for changing the Q M starting and end 
point structures into their M M equivalent. Then by calculating the M M F E P they 
are able to complete a free energy cycle and obtain the relative free energy 
difference between the two Q M systems. The method presented here involves a 
direct Q M conversion and requires no M M intermediate. 

Theoretical Approach 

In the next four subsections we wi l l discuss the individual techniques necessary to 
change the number of electrons, atoms and orbitals within a system as well as the 
identity of certain atoms. A l l of the derivations and tests shown here are done 
within the semiempirical P M 3 Hamiltonian(25, 26), although they could easily be 
extended for use with other Q M potential functions. 

Number of Electrons. Here we formulate the fractional electron method to allow 
for non-integer numbers of electrons in a Q M system. The approach relies on the 
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144 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

use of a pseudo-closed-shell expression for the electronic energy, where fractional 
occupation numbers for the MO's is assumed at the outset. If M is the number of 
atomic orbitals (AO) , η is the total number of electrons in the system and nk is the 
number of electrons in the k t n molecular orbital (MO) then it is possible to define 
the electronic energy of a system using the pseudo-closed shell formula: 

Ε^ = ΣΣ(Ημν+βμν)Ρμν (D 
μ=\ v=l 

where, 

H„=J*>)[4 Vi - Σ VJirfy.W τ, (2) 

G , v = f ï \ W t e ) - k ^ ) ) P i o (3) 

λ=ΐσ=ΐΙ- z J 

Ρμν ~ Σ flk C vk ^ 

H * » ) = I I U M Z ^ z l m . W τ.«* τ2 <s> 
Τη 

Note that in this derivation the number, nk, of electrons in a M O may take on a non-
integer value (0^nk^2). While not representative of a physical system non-integer 
electrons have been used previously in , for example, the so-called half-electron 
method.(27) 

Energy gradients and thus atomic forces can be computed analytically only i f 
the electronic energy is variationally optimized with respect to the MO's . Further, 
the energy expression (1) implicitly assumes that the MO's are orthonormal. Thus 
we require, 

c l c , = 5 , (7) 

C)SCj = Ôt (8) 

Equation 8 is the standard ab initio Hartree-Fock formulation, while equation 7 is 
employed with semiempirical treatments. To keep the discussion general we w i l l 
focus on the Hartree-Fock procedure and not the semiempirical methods. Extension 
to semiempirical approaches is straightforward. 

The quantity which must be minimized is the Lagrangian L , 

occ occ 
L = Eekc-2^eij{c]Scj-Sij) (9) 
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where Qj are Lagrange multipliers. The minimization is most conveniently carried 
out with respect to ck while treating ck as formally independent. Thus we have, 

0 = § = é \ Σ Σ Κ + G ^ ~ 2ΣΣ«ι -δΜ (ίο) 
°^k [μ=\ v=l i j J 

Formal differentiation, followed by a series of algebraic manipulations yields, 

MM Xp M M 5 f p t occ 

μ=\ v=l V^-k λ=\ σ=1 j 

Using the Hermitian nature of G the subscripts of G can be interchanged and the 
expression can be rewritten as, 

MM Xp M M Sp occ 

° = Σ Σ Κ + G , J & + Σ Σ ^ Γ σ Α „ - 2 Σ « Λ d 2 ) 
μ=1 v=l ^ j t A=l σ=1 ^ k j 

M M 

Rearranging terms gives, 

M M ftp occ 

MM occ 

0 = Σ Σ Κ + 2 G , v K c v * e M - 2 Σ ε * / Λ ; <14> 
μ=1 v=l ; 

occ 
0 = n t ( H + 2 G ) c k - 2 ^ X S c , (15) 

A n d finally, 

occ 
«*Fc k = 2 £ e v S c , . (16) 

where the Fock matrix F is defined as (H+2G). 
For a closed-shell system, the familiar equation 

occ 
F c k = £ e , S c , (17) 

j 

would result because nk=2 for all occupied MO's . In the case of the fractional 
electron method, however, at least one occupation number w i l l be less than 2 and 
equation 17 is retained. 

A t this point it is customary to define a unitary transformation U of the 
occupied M O ' s that would diagonalize the matrix of Lagrange multipliers €kj, so 
that the problem to solve has the general form, 

F c ^ e . S C f c (18) 
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This is easily justified in the case of a closed-shell system because the wavefunction 
and all the molecular properties calculated from it are unaffected by a unitary 
transformation of the occupied MO's . Unfortunately, there may be no actual 
wavefunction that corresponds to the fractional electron system, and the energy w i l l 
be affected by any unitary transformation that mixes fully occupied M O ' s with 
partially occupied MO's . So the unitary transformation argument cannot be used to 
convert equation 17 to equation 18. However, as long as equation 17 is satisfied for 
some set of Lagrange multipliers that preserve the orthonormality of the M O ' s , the 
corresponding vectors ck w i l l be nontrivial solutions that coincide with an 
extremum of Eelec- This is all that is required in the fractional electron method, 
thus a diagonal matrix of Lagrange multipliers may be assumed, and the M O ' s are 
solutions of. 

nkFck = 2ekSck (19) 

Note that equation 20 can be related to equation 19 by defining an F 

Ι " Α = ε ί 8 € 4 (20) 

F i = ^ F (21) 
2 

The eigenvalues of equation 20 are related to those of equation 19 by 

Thus by making nk a function of λ we can alter the number of electrons in a 
system. The states corresponding to fractional λ values w i l l be not be physical, 
however since the transformation between states is smooth and the free energy a 
state function only the free energy difference between the initial and final states can 
be determined. 

Number of Atomic Orbitals. Changing the number of atomic orbitals can be done 
by scaling the Fock matrix elements corresponding to these orbitals with the 
perturbation parameter λ. This requires that the perturbations be done in the 
direction in which the number of atomic orbitals decreases. A s λ approaches zero, 
the energy levels of the disappearing atomic orbitals becomes very high so that they 
no longer contribute to the occupied molecular orbitals, and thus do not affect the 
energy for the system. This simple method allows the deletion of atomic orbitals 
without the generation of a new independent Fock matrix as would be required for a 
dual topology Q M approach. 

Identity of an Atom. If the number of valence electrons and the locations of the 
atomic orbitals on two molecular species are identical, the energies for these two 
systems w i l l exhibit the same mathematical dependence on the atomic parameters, 
independent of the identity of the element. A brief derivation of the P M 3 
approx imat i on^ , 26, 28), which is largely based on the A M 1(29) and M N D O ( 3 0 ) 
method, is given here as the dependency of the parameters is essential. The total 
heat of formation of a molecule, within P M 3 , is given as a combination of electronic 
and nuclear repulsion energies E e l e c t and E n u c along with the experimental heat of 
formation of the atoms, and the calculated electronic energy for the gaseous atom 
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= EtUa + -ΣΕ* + Σ Δ # ; (23) 
A A 

Eei is taken to be a function of (1) the ground state atomic orbital (AO) population 
of i , (given by the density matrix element r^i), (2) the one-electron energies for A O i 
of the ion resulting from removal of the valence electrons, U u , and (3) the two-
electron one-center integrals, <iiljj> and <ijlij>. 

EÎi = f{P«JJu{ii\jj)m)) (24) 

The two electron one center integrals are given as <sslss>=GSs, <sslpp>=Gsp» 
<pplpp>=Gpn, <pplp'p ,>=Gp2 and <splsp>=HSp, while U u is taken to be U S s or 
Upp . For Gp2 the p and p indices represent aifferent Cartesian p orbitals on the 
same center. The nuclear energy is expressed as the summation over the individual 
nuclear-nuclear interactions. 

E„uc = lEn(i,j) (25) 

Within P M 3 E n ( i , j ) is given as: 

En(iJ) = ZfiiSSASjSj) · (1 + e'-aiRij) + + ^ · 

( Z ^ e x p [ - M ^ - c w ) 2 ] + I ^ e x p [ - ^ ( ^ - c k j ) 2 ] j 
(26) 

The simple exponential forms in equation 26 were used in the original M N D O 
formulation(30, 31), while the Gaussian terms were added within A M 1(29) and 
PM3(25, 26, 28) to facilitate the representation of hydrogen bonded systems by 
reducing the long-range repulsion of the core-core term used in M N D O . The 
adjustable semiempirical parameters associated with the exponential and Gaussian 
terms in equation 4 are a j , afci, bki and ck i , while ZJ is the number of valence 
electrons on atom i and <sisilsjsj> is a two center two electron repulsion integral. 

The electronic energy (see equation 23) can be expressed as 

EM=\l iPijiKj+Fij) (27) 
Ζ 1=1 7=1 

Where Pjj is the density matrix, Hi j is the one-electron matrix and F y is the Fock 
matrix. Tne diagonal Fock matrix elements are given by, 

¥μμ = ϋμμ+ ΣνΜΜ,Β + ΣΡνν\(μμ\νν)-^{μν\μν)\ + Σ ΣΣΡλσ(μμ\λσ) (28) 
ΒΦΑ ν L 2 J Β*Α λ σ 

where μ is centered on atom A . If μ and ν are both on atom A the off diagonal 
elements are, 

F„v= Σ ν ^ + \ρμν[3{μν\μν)-{μμ\ vv)]+ Σ Χ Χ Μ μ ν Ι Α σ ) (29) 
ΒΦΑ * B*A λ σ 

While i f μ is on A and ν is on Β the off diagonal elements take the form, 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
01

0

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



148 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

F,v = \{βμ + βν)Ξμν - \ Σ Σ ( μ λ \ va) (30) 
L Ζ Α σ 

In equations 28 and 29 βγ and βμ are semiempirical parameters, <μνΙλσ> represents 
the two electron two center integrals and 8μγ is the overlap of Slater type orbitals of 
the form, 

φμ=ΝΓη-ιβ-'ξΥ?(θ,φ) (31) 

Here ξ is an A O exponent which can be labeled as ξ$ or ξρ, depending on whether it 
corresponds to a s-type or p-type A O . 

In P M 3 18 parameters are defined for each heavy atom (i.e. C , Ο, N , etc.) 
while hydrogen has only 11 because the p A O parameters are unnecessary. The 
parameters for the heavy atoms are U S s , Upp, ββ, βρ» £s> ξρ» «i> G S s , G S p , Gpp, 
G p 2 , H S p , an , b u , e n , a2i, b2i, and C2i- Iftne parameters are linearly scaled from 
the values appropriate for one element to those of another an interconversion of 
element types can be achieved (i.e. V(k) = XVA + ( Ι - λ ) ν β , where V A and V B are 
the parameter type appropriate to system A and B) . 

One additional complication does arise i f overlap integrals are required for 
an atom that is undergoing a change in principal quantum number (e.g., Z n + 2 -> 
C d + 2 ) . Since the Slater orbitals depend on the principal quantum number the 
overlap integral must reflect the change in this parameter. This may be done rather 
abruptly using integer steps in discrete windows of the simulation, or it can be done 
gradually by calculating the overlap integral for each of the principal quantum 
numbers and then assuming a linear interpolation between the two values. A n 
alternative method which would alleviate this problem altogether would be to imply 
a numerical quadrature scheme to estimate overlap integrals between pseudo-slater-
type oribtals with non-integer quantum numbers. The linear interpolation is used 
here, however, because it is straightforward to apply within the existing framework 
o f M O P A C . 

Number of Atoms. Changing the number of atoms in a system is a special case of 
changing atomic identities. Atoms being deleted are perturbed into dummy particles 
for which all parameter values are zero. Typically, this technique would be 
combined with one or more of the methods described above as the number of 
orbitals and electrons is quite likely to also change when an atom is deleted. 

Except for numerical instabilities, the non-physical nature of states arising 
from such a treatment is not a concern because the free energy which is being 
calculated in the simulation is a state function and, hence, it is independent of the 
path between the initial and final states. As long as the initial and final states remain 
unchanged the path between them w i l l have no effect on the overall result. 

Computational Procedure 

The simulations in this study were done using the semiempirical M O method 
PM3(25, 26, 28) within the context of the Q M / M M coupled potential recently 
implemented within our lab.(14) A modified version of M O P A C 5.0(32, 33), was 
used for the Q M calculations and the driver M D program was a customized version 
of A M B E R . ( 3 4 ) The P M 3 Hamiltonian was selected because of its superior 
correlation with experimental heats of formation for the compounds studied 
herein.(25) From a methodological perspective, A M 1,(29) or MNDO,(30) or any 
other L C A O based method could have been used. 
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The gas phase fractional electron method simulations were done with 0.5 ps 
of initial equilibration and 9.0 ps for the perturbation using a 0.1 fs time step. A 
very short timestep was employed to ensure an accurate integration of the equations 
of motions during the perturbation from one Q M state to another. The simulations 
were done using a slow growth(35) methodology in which the perturbation 
parameter lambda (λ) controlled the number of electrons present in the system. 
Perturbations between element types and to dummy atoms were controlled through 
the direct scaling of the semiemperical parameters.(36) Each system was tightly 
coupled to a temperature bath which was maintained at 300K using the Berendsen 
method.(37) In addition, a holonomic constraint technique was employed to help 
maintain the geometry of the compounds as atoms were deleted.(38) Bonds which 
changed lengths between the starting state (λ=0) and the final state (λ=1) were 
coupled to λ and constrained to change smoothly been the appropriate gas-phase 
values during the simulation. 

In the calculation of the solvation free energies the M M solute molecules 
where placed within an initial solvent box of dimension 21 χ 21 χ 21Â with 
approximately 275 TIP3P(39) water molecules. The simulations used constant 
pressure (1 atm.) and temperature (300K) conditions.(37) The time step used for 
the two systems studied here were different due to the presence of high frequency 
motions within the ammonium ion and methane which are not present in chloride or 
fluoride. A time step of 1.5 fs seconds was used in the perturbation of chloride to 
fluoride while a time step of 0.5 fs was used for the perturbation of ammonium ion 
to methane. In both cases S H A K E was used to constrain the bond lengths of the 
solvent molecules at their equilibrium values.(38) The resulting systems where then 
equilibrated for 30 ps and then free energy data was collected for an additional 60 ps 
using double wide sampling. To examine the hysteresis of the F E P simulation a 
second run was conducted using the end point of the initial 30 ps of equilibration to 
begin a second 30 ps of equilibration and then an additional 60 ps of double wide 
sampling. During the sampling phase for the chloride to fluoride ion 
interconversion eleven simulations were used to obtain ten free energy windows to 
complete the perturbation from λ^0 to λ=1. For methane to the ammonium ion 
twenty-one windows were used to affect the interconversion. 

Another aspect of the calculations done in solvent is the treatment of long 
range interactions, which is qualitatively handled through the use of a Born 
correction.(40, 41) It is important to note that while the Born corrections are 
equivalent for two identically charged atoms (which are taken to be point charges), 
this w i l l not be the case when the charge of the system is changed along with the 
atomic identity. Where this occurs the Born correction must be added to our 
calculated free energies. In the case of a point charge using a 9.0Â cutoff the Born 
correction is 18.2 kcal/mole. The value of the Born correction for a non-point ion is 
more difficult to evaluate. For example, when considering the ammonium ion the 
actual sphere in which solvent is "seen" by the solute is -10Â in radius because of 
the 1Â N - H bond. For this size sphere a Born correction of 16.4 kcal/mole is 
calculated. However, the correct value to use is not obvious as pointed out in a 
similar study by Boudon and Wipff(42) where they used a point charge-derived 
Born correction for the ammonium ion. 

The thermodynamic cycle used for the calculation of solvation free energies 
is given as Figure 1. Since the Gibb's free energy is a state function this cycle 
gives, 

AAG£y + AGy
soiv - AAGx

soty ~ AGx
50iv = 0 (32) 

Upon rearrangement AAGx
S0?vy can be calculated as: 

AAGx
soty = AGy

soiv - AGx
solv + AAGx

ga1y (33) 
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X g Y , 9 

Figure 1: Thermodynamic cycle 

A s mentioned above when the charge of the system changes a Born correction must 
be added to AAGxo7vy to account for long range interactions. Consideration of this 
gives: 

The results of the first series of calculations done to study perturbations between 
atoms types are summarized in Table 1. The first involved the perturbation of a 
chloride ion into a fluoride ion in the presence of M M water. The M G S / v ~ * F was 
calculated to be -4.8±0.6 kcal/mole through the perturbation of the Q M atoms 
within our methodology. Equation 32 can be used to compare this calculated 
number with an estimated experimental value. The free energy of solvation for 
chloride has been reported experimentally to be -75(43) -75.8(44) and -82.9 
kcal/mole(45) while the value for fluoride has been reported to be -103.8(44), -
105(43) and -112.8 kcal/mole(45). The value of A A G ^ ' is the energetic 
difference in the gas phase between the two atomic species or simply the difference 
between their heats of formation (Le. AHf~ = -51.2 kcal/mole, AH} = -31.2 
kcal/mole and A A G £ 4 i = 20.0 kcal/mol in PM3) . This gives a AAGZ„~*F~ (from 
equation 13) of between -8.0 and -10.0 kcal/mole (average value of -9.3 kcal/mol) 
depending on the set of experimental solvation free energies chosen. In this case we 
have only evaluated AAGs£v~*r using experimental solvation free energies obtained 
from the same source.(43-45) If the solvation free energy values obtained from the 
various sources (using the same standard state) were mixed a larger range of values 
for M G S / v ~ * F would result. The experimental value for M G S / v - ^ results is in 
reasonable accord with our calculated value of -4.8±0.6 kcal/mole. The difference 
between the estimated average experimental value and the calculated 
AAGS/v~*F can be improved by deriving Lennard-Jones parameters that are suitable 
for coupled potential simulations of chloride and fluoride.(46) 

AAGx
soty = AGy

soiv ~ AGxsoiv + AAG£y - AAGto, (34) 

Results 

Table 1: Free Energies. a 

quantity CI" to Ρ N H 4 + to CH4 
AAGx

s;Zy(calc) -4.8±0.6 
A A G i ; / v

> y ( e x p ) b -8-0- -10.0 
AAGx~>y 20.0 

-94.6±1.5 
-102.8--111 
-166.4 

a) A l l energies are given in kcal/mole. 
b) Estimated from equations 13 and 14. 
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The second system studied involved the perturbation of the ammonium ion 
into methane in aqueous solution, and the results for these simulations are 
summarized in Table 1. The number of valence electrons in this perturbation is 
maintained even though the overall charge changes. The calculated AAGS4^"4 

was -94.6±1.5 kcal/mole. For comparison an estimate of the experimental value for 
AAGS4^"4 can be calculated using equation 33. In this equation AAGffi^"4 can 
again be taken from the difference of the heats of formation for the two compounds 
in the gas phase (AH1}"*=153.4 kcal/mole and Δ/ / ) " 4 =-13.0 kcal/mole) as 
evaluated by PM3.(26) This results in a M G J 2 5 " > U | 4 value of -166.4 kcal/mole, 
which was additionally verified through a gas phase free energy simulation as a 
check of our methodology. The experimental AG™V

4 is 1.93(47) kcal/mole while 
AG™4 has been reported to be -69.8(45), -74.8(48), and -78 kcal/mole(49). Using 
equation 33 and the values for A G S & , AGsJiJ, AAGgaV^L"4 and a Born correction 
of 16.4 kcal/mole we estimate that AAG^™4 is between -102.8 to -111 
kcal/mole. Our calculated value (-94.6±1.5 kcal/mol) is several kcal/mole more 
positive than the estimated experimental value. However, modification of the 
Lennard-Jones parameters for CH4 and NH4+ used in the coupled potential 
calculations should bring the calculated results into better agreement with the 
estimated experimental value. 

To test the accuracy of the fractional electron method, as well as our ability 
to account for changes in the number of orbitals in a system three perturbations were 
carried out. These were the interconversion of ethane to methane, methanol to 
methane and methane to fluoromethane. The results of these simulations are given 
in Table 2. How to compare our calculated results to that determined using other 
approaches is complicated. We could compare to free energies calculated using the 
appropriate partition functions(50) : however, since we are restraining the molecule 
in the F E P simulation, the vibrational, rotational and translational contributions are 
all affected. Given this uncertainty we have presented free energy differences using 
the partition function approach(50) with all terms considered and with only the 
vibrational contribution considered. In Table 2 we also present the calculated gas-
phase heat of formation difference between the two molecules. 

Table 2; Free Energies^ 
AGx^y 

gas 
AGx~*y 

gas 
AGx~*y 

gas 
AAHx

f~*y 

(FEP) (partition)^ (partition) 0 (gas) 
C2H6->CH4 5.3±01 8.2 5.8 5.1 
CH30H->CH4 35.0±0.1 42.6 39.4 39.0 
CH4->CH3F -44.5±0.1 -43.4 -40.8 -40.8 

a) A l l Energies are gin in kcal/mol. 
b) Calculated from the vibrational frequencies and the appropriate partition 
functions (see ref 50). 
c) Calculated from the vibration frequencies and the appropriate partition functions 
(see ref 50) but rotational and translational contributions have been removed. 

The free energy difference calculated from the gradual perturbation of 
ethane to methane in the gas phase was 5.3 kcal/mol. This is in reasonable 
agreement with the heat of formation difference as well as the partition function 
approach where the rotational and translational terms have been neglected. The 
agreement with the full partition function approach is not as good. In the case of the 
conversion of methane to fluoromethane, the F E P and full partition functions 
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methods were in closer agreement with the calculated free energy changes of -44.5 
and -43.4 kcal/mol respectively. However, the F E P value was ~4 kcal/mol higher 
than the value given by the heat of formation and partial partition function 
differences. The conversion of ethane to methanol was the last of the test 
perturbations examined. In this system our F E P value was 35 kcal/mol, while the 
other calculated vales were 4-7 kcal/mol higher. Overall, the agreement between 
the various types of calculated values was reasonable and it is clear that the F E P 
approach is giving results that are comparable to energy differences computed in 
other ways. Thus, i f an accurate Q M model is employed, the fractional electron 
approach should be a reliable method for estimating free energy differences between 
two molecules. Disagreement between the F E P and partition function energies can 
be associated with several factors (time-scales, use of M D constraints, etc.) but 
further study is needed to pinpoint problem areas. 

Conclusions 

We have demonstrated methods for allowing the direct interconversion of Q M 
systems in F E P calculations. With further refinements of the simulation protocol we 
believe that these methods wi l l develop into a powerful tool for the accurate 
calculation of differences in free energies. Only in the past few years has the 
calculation of extensive Q M - M D trajectories and Q M - F E P simulations become 
computationally feasible. It is for this reason that the field remains primarily 
uninvestigated and in need of significant development and testing. The next decade 
should bring rapid progress in Q M - M D studies on large systems, and through the 
development of Q M - F E P methodologies we w i l l also be able to calculate free 
energies from condensed phase Q M and Q M / M M simulations. 
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Chapter 11 

Analytic Second Derivatives of Molecular 
Energies 

Density-Functional Implementation of Perturbations 
Due to Nuclear Displacements 

Heiko Jacobsen, Attila Bérces, David P. Swerhone, and Tom Ziegler1 

Department of Chemistry, University of Calgary, 
2500 University Drive Northwest, Calgary, Alberta T2N 1N4, Canada 

W e report an implementation of analytic second derivatives with 
respect to nuclear displacements, based on density functional theory 
within in the Kohn-Sham formalism. The implementation includes the 
solution of the coupled perturbed Kohn-Sham equations. Our approach 
is in line with the Amsterdam Density Functional package ADF, and 
includes the use of numerical integration, density fit as wel l as the 
frozen core approximation. The efficiency of the algorithm is tested in 
comparison with finite difference methods. 

1. Introduction 

A number of spectroscopic properties can be formulated in terms of second order 
derivatives of the total electronic energy with respect to two perturbational 
parameters. When both perturbations are represented by nuclear displacements, the 
double derivative yields harmonic force fields, which are important in vibrational 
analyses as wel l as in molecular dynamics. Compared to finite difference methods, 
analytical derivatives are superior both with respect to the computational effort as 
well as the accuracy of the results. 

During the last 15 years, the advances in density functional theory (DFT) (1) 
have made this method very successful in applications to problems in molecular 
structures and dynamics. Thus, practical D F T implementations of analytic second 
derivatives have recently been reported by Handy and co-workers in the C A D P A C 
program (2), by Johnson and Frisch in the G A U S S I A N program (3), and by 
Fitzgerald and co-workers in the D G A U S S program (4). 

A l l these previous implementations have features unique to the way in which the 
Kohn-Sham (KS) equations (5) are solved in the respective program system. W e have 
reported the implementation of analytic second derivatives into the Amsterdam 
Density Functional package A D F (6,7). The A D F program system (8,9) has three 
distinguishing features, namely the use of density fit, the evaluation of most matrix 
elements by numerical integration as wel l as the application of the frozen core 
approximation. A minor deviation is in addition the use of Slater type orbitals (STO) 
as basis functions, compared to the more commonly used Gaussian type orbitals 
(GTO). 
1Corresponding author 

0097-6156/96/0629-0154$15.00/0 
© 1996 American Chemical Society 
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11. JACOBSEN ET AL. Analytic Second Derivatives 155 

In this paper, we shall present a short outline of the ADF implementation of the 
analytical second derivatives. Major emphasis will be given to the special features of 
the ADF program package. The performance of our algorithm wil l be judged in a 
comparison with the finite difference ADF approach. 

2. The ADF Implementation of the Kohn-Sham Equations 
Since it is not our purpose to review DFT within the KS-formalism, we only 

present a concise description of this method. For a detailed account, we refer the 
reader to the literature (1). However, we will focus on the special features of ADF in 
connection with perturbations due to nuclear displacements. Our notation is such that 
derivatives are indicated by superscripts in brackets or parentheses. 

In ADF, the set of KS-orbitals {^,(1);/ = l,/i}is determined in such a way that the 
corresponding KS energy is minimized. This condition is satisfied i f the functions are 
solutions to the following set of spin-unrestricted one-electron KS-equations: 

A 'CD^d) = < w ( D ; γ = αφ ( l ) 
under the condition 

1^(1)^(1)5^ = 5^ (2). 
The one-electron KS operator A r ( l ) is given by 

* 7(1) = Γ + £ ν ί α ) + ν 0(1) + ν ί ; γ=α,β (3), 
Λ 

where the γ superscript refers to α or β spin, respectively. The terms on the right hand 
side of equation 3 are the kinetic energy operator, the nucleus-electron attraction 
operator, the electrostatic potential from the total electronic density, and the exchange 
correlation potential defined as the functional derivative of the exchange correlation 
energy with respect to the density. 

The KS-orbitals are expanded in terms of STOs as 
2hiT 

Vi = Σ^Χμ <4>· 

For the sake of convenience, we write Ω instead of 12(1), Î2 being any molecular 
orbital, basis function or operator, whenever the context remains clear. 

2.1 Frozen Core Approximation. Making the assumption that the orbitals describing 
the inner-shell electrons are unperturbed in going from the free atom to the molecular 
environment, only the valence electrons have to be treated explicitly in a variational 
calculation. The KS-orbitals are now expressed by a linear combination of the valence 
basis set {λ Λ 

However, one has to ensure orthogonality between all molecular orbitals, that is 
between valence as well as core orbitals. To achieve this, the valence basis set is 
written as 

2Me 

τ 
where [χ™1] are STOs describing the valence electrons, and [χ€

Χ
οη] is a set of 

primitive auxiliary core STO functions, one core function for each core orbital kept 
frozen. The coefficients άμτ are determined under the constrain that all molecular 
valence orbitals must be orthogonal to all true core orbitals {ω€"'; τ = 1,2MC}. This 
requirement is met by making the valence basis set {λμ;μ = 1,2Λ/} orthogonal to the 
true core: 
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156 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

| Α ί ί ω Γ ^ = 0 (7) 

From equation 7, the coefficients άμτ can be evaluated as 

B = - R S ; L (8a), 
where the matrix elements are defined as follows: 

(B)M T = V (8b) 

( R V = J ^ > r 5 T , (8c) 

( 8 « . ) Λ = | ζ Γ α » Γ Λ ΐ (8d). 

It wil l be necessary to evaluate the derivatives of the core orthogonalization 
matrix. The first derivative affords 

B<*4> = - R ( ^ > S ^ - R i S i , ) ^ (9). 
The Score matrix depends on core functions only; therefore overlap elements between 
functions on different centers become small enough to be neglected. The remaining 
one center overlap integrals are independent of the molecular structure, and as a 
consequence the second term of equation 9 can be discarded. Thus, 

B ( ^ ) = _ R ( x . ) S ^ ( 1 0 ) . 

A similar argument affords for the second derivative 

core * ** 
The second derivatives of the R matrix-elements can readily be obtained from 
equation 8c. 

2.2 Numerical Integration and Density Fit. With the expansion of equation 5 the set 
of one-electron KS-equations take the form 

2M 

£ ^ - ε , ( 5 ( Η ) ^ = 0 ; τ=1,2Μ (12), 
r-i 

where the KS-elements, F^, and the overlap integral, (S(i))ty, are defined as 
F t r = jA;( l )A r ( l )A r ( l )5T, (13a) 

( 5 α ) ) 7 = /λ;(1)Α τ(1)5τ1 (13b). 
The matrix elements FTy are calculated in the ADF program by numerical 

integration as 

Fr, = X W( r * ) ^ t ( r t )hr(rk )A r ( r 4 ) (14), 
4=1 

where W(rk) is a weight factor associated with each of the Ns integration points, rk. 
The evaluation of F^requires a precalculation of the electronic potential Vc at each 
integration point r t , where Vc is given in terms of the electronic density p(r) as 

^c(r f t ) = J p ( r 2 ) / l r 4 - r 2 l 5 r 2 (15). 

The electrostatic potential Vc(rk) is in the ADF program determined by expanding 
P(r4)as 

P ( r t ) « p ( r t ) = £ û | 4 / M ( r t ) (16). 

Here, {fu(xk)} is a set of Mf auxiliary STO fit functions centered on the different 
nuclei, and {au} is a set of coefficients obtained from a least square fit of p(rk) by 
lfu(rk)}. The potential Vc(rk) now has the form 

Vc(rk) « Vc(rk) = X f l J J . ^ y i r , -η ΐ ί τ , (17), 
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11. JACOBSEN ET A L Analytic Second Derivatives 157 

and can be obtained analytically for each sample point rk as a relatively small sum of 
integrals, each involving only a single STO. In contrary, an analytical calculation of 
Vc(rk) from equation 15 would have involved a larger number of more cumbersome 
integrals with two STOs on different centers. 

The fit coefficients au of equations 16 and 17 can be calculated as 
a = S ( r )t + A ( f )S(f >n 

where the terms are defined as: 

(*(/)>*=J/;/A 

W - n + S - * t 
A ( 0 -

n + S ( r ) n 

Ν = \ρδτ 

(18), 

(19a) 

(19b) 

(19c) 

(19d) 

(19e). 

The derivative of VC with respect to a nuclear displacement writes 
M ht 

V ? ' } = i ^ J J . O r . y i r . - r , l 5 r , + ^ a J / ^ V , ) / ^ -Γ,Ιδτ, (20). 
M=l _ U=\ 

Thus, the calculation of V£A) requires the derivatives of the fit coefficients a u as well 
as the derivatives of the potential due to each fit function. The derivatives of a u can be 
obtained from equation 18 as 

*ίΧλ) ^ S ^ / ^ I + S " ^ (21) 

Simple but lengthy manipulations afford the expression 

(22) = Aw + 
n + S^n ( f ) 

with 

A = s - i S m n n t s a ) 

N^^Jp^^r^r 
w = t ( X > ' ) - S < x ' , ) a 

(23a) 

(23b) 

(23c). 
= J[p(r) - a · f (r)]f iX*\r)dr + | [P ( Χ λ ) (Γ) - a · f iX*\rj\f (r)dr 

The vector w is calculated by a two-center numerical integration scheme using elliptic 
prolate spheroidal coordinates. The remaining terms in equation 23 are calculated 
analytically. 

3. The Coupled Perturbed Kohn-Sham Equations 

Let us consider the first order change in the electron density with respect to the 
displacement of the nuclear coordinate XA from a molecular reference conformation 
characterized bv y 0. With the expansion of the KS-orbitals according to equation 5, 
we get for p[x*r 
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158 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

- É l t f ^ V i + v ' > / x ' ) } + É K B V i + ν ; ν ί Β ) } (24), 
1 ί 

where all orbital terms are evaluated at the reference geometry y 0. The terms ψ{Χλ) 

are readily available from the analytical derivatives of STOs, and the terms ψ\B) can 
be constructed from the derivative of the core orthogonalization matrix B, equation 
10. The terms \rfC) require an evaluation of c j f 4 \ which involves a solution of the 
coupled perturbed KS (CPKS) equations. In our treatment outlined here, we follow 
the original ideas of Gerrat and Mills (10) as well as Pople and co-workers (11). 

We assume that the KS-equations, equation 12, have been solved in the 
unperturbed case characterized by y 0. The corresponding solutions are given by 

2 M 

Ψ^ο) = Σ^(γΒ)λμ(γ0) ; ? = 1,2M (25a). 

Solutions of the form 
2 M 

V i O0 = £ c « O ' > V ) ' ) · ? = 1.2M (25b) 
μ 

are now sought in the vicinity of y 0 at y, where y - y 0 i n our case represents a 
displacement of the nuclear coordinate XA. It is expedient to introduce the auxiliary 

v f ( y ) = £ ^ ( y 0 ) ^ ( y ) ( W . 
μ 

and express ψρ(γ) as 

Ψ,&) = Σ*9&)9&) (25d). 

The problem is now reduced to finding the coefficients un which are related to 
cAy) by 

2M 
Cup(y) = £c^ (y 0 )w^ (y ) (25e). 

q 
The relevant elements from the u matrix are given as (10,11) 

F 0 ) / c d ) ) Λ0) 

v - ' j f c t e ' <*·>· 
where 

£v ' — ε p q 

and 

' s S ) ^ = | < ^ w < 2 6 b> 

F £ ; = | ^ I A < ^ P W <26C>-
In equation 26, e£0)is the orbital energy of equation 12 for the unperturbed system. 
The relation in equation 25e now allows for the calculation of p ( C ) : 
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11. JACOBSEN ET A L Analytic Second Derivatives 159 

OCC OCC r 0 -j 

= Σ Σ Κ } « W a «y *,ο>.>*;ο>.>] (27). 

+ £ ' S l | i , V : ( y . ) f t ( y . ) + i i ) f>.(y.)tf(y.>] 

It remains to evaluate matrix elements of the type ( F ^ ) ^ - and (Sffi ),,,·. The 
evaluation of the dependencies through derivatives of the auxiliary basis is somewhat 
evolved, but straightforward. We will however comment on the derivative of the KS-
operator, which is needed in the evaluation of (F* 0^· . 

A i ^ = £ v ] ^ ; y = a , j 5 (28). 
A 

The derivative of the electron density has been addressed in equation 24. Further, the 
terms V(J?A) and (V^C){XA) are readily obtained from the analytical form of V$ and 
V£ c, respectively. Their evaluation will not further be discussed here. The term V [ X A ) 

can be broken down as 
γ[Χλ) = y£A) + yW + V ( o (29a). 

Using a density fit as described in section 2.2, we can evaluate V { X A ) in each 
integration point as follows: 

V?*'(r 4 ) - V? '»(r 4 ) = V<*<> + + (2 9 b>-

The last two terms in equation 29b can be obtained from a fit of Ρ and Ρ , 
respectively. The derivative V { X A ) is given in equation 20. 

We note that the matrix elements ( F ^ ) ^ depend through on u . Thus, 
u ( l > has to be determined in a self consistent procedure. The vector u ( 1 ) can be 
partitioned as 

u ( 1 ) = u ° + w(u) (30). 
In equation 30, the first term is independent of the solution u ( 1 ) , whereas the second 
term depends on u ( l ) . The solution to equation 30 is expressed as a linear combination 
of trial vectors 

u = <x°u<> + a>vt + a 2u2 + + a k u k (31), 
where the orthogonal vectors are defined as 

^ Η ^ Λ - Σ τ Ά 1 (32). 

The set of linear combination coefficients [ak] can be determined by solving a set of 
linear equations obtained by multiplying equation 30 from the left by u z , and 
substituting 31 into 30. Typically four to six terms are sufficient to reach 
convergence. 

4. Formulation of the Second Derivatives 

Let us express the total electron density p(l) as the superposition of spherical 
atomic densities p (1) as well as the deformation density Ap(l), representing the 
change in density on formation of the molecular system: 

p(l) = £ p c ( l ) + 4p(l) (33). 
G 

Accordingly, we can write the total KS energy as (12) 
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EKS = Σ £ £ ( Ρ ° ) + + + AEXC + VPair (34), 
G 

where the terms are defined as 
AT = |4ρί1 ,Γ)ΓΛι (35a) 

AV =|4p | | ;vJ? + V?+i4V c J«Ti (35b) 

ΔΕκ = Ε3Κ(Δρα,ΔρΡ) (35c). 
In equation 31, we have introduced the operator 4 V C : 

4 V C = J^p(2)/lr t - Γ 2 1 δ τ 2 (36). 
Further, V p f l i r is the electrostatic interaction energy between the atom pair [AB] in 
the combined molecule. Taking the first derivative with respect to a nuclear 
displacement Χ Λ , we get 

£ g - } = ΔΤ[ΧΑ) + AV[XA) + AE{X
C

A) + V<£> ( 3 7>-
The deformation density formalism ensures that, in equation 37, one center terms, 
which do not contribute to E{£A\ are explicitly eliminated. This aspect is of major 
importance since numerical integration rather than analytical integration is used 
(13,14). 

With the expansion of the KS-orbitals according to equation 5, we have for E{£*] 

dEKs = y dEKs . y y dEKs ^ r ι y V dE™ ^SiiL /3g a \ 
dXA f Θχμ dXA T 2 ? » » dXA f f ^ » A 

which we write as 
E % A ] = ^ + E™<+E%<} (38b). 

The terms on the right hand side of equation 38b describe the explicit dependency of 
Em on XA through the S T O basis, the dependency through the derivative of the core 
orthogonalization matrix as wel l as the implicit dependency through the change in the 
expansion coefficients. It is possible (15,11) to express the implicit dependency as 

* 2 j l = - Ϊ Σ Σ ( Ψ ? Λ % Ψ Ι )=*(ΧΛ) <39>· 
i μ 

Thus, 
Ε[ΧΛ ] = ΔΤ{ΧΑ > + Δ V(XA > + ΔΕ£Α) + v£f > + R{XA ) + Ε**Α (40). 

When taking a second derivative with respect to the nuclear coordinate YB, implicit 
derivatives can no longer be avoided: 

= [&> + Eg* f ' * + [ E ^ > + Eg* f ( 4 1 ) . 
W e shall discuss separately the two terms of equation 41. 

4.1 Explicit contributions to the second derivatives. The term [E^A) + E%'XAÎYB) 

contains of contributions due to dependencies through the S T O basis as we l l as 
through the derivative of the KS-operator. The former can be evaluated by straight 
forward differentiation of the basis functions, whereas the latter can be evaluated as 
outlined in section 3. However, our implementation makes extensive use of the 
translational invariance (ΤΙ) condition: 

i ~ É r i f ( X A , x " ' •·'χ")ατ=ο (42)· 
The reformulation of certain integrals using TI serves two purposes (13,14). First, 
terms that although zero by symmetry give rise to spurious non-zero contribution 
when evaluated by numerical integration, can explicitly be eliminated. Second, the 
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11. JACOBSEN ET AL. Analytic Second Derivatives 161 

derivative of certain operators can be avoided. A s an example, we discuss the 
evaluation of the term ΔΤ. The first derivative affords 

ΔΤ(χΑ) = 2 £ ( ^ Χ " ) | Γ | ψ) (43a). 
i 

' have chosen our orbitals to be real, and we w i l l continue to do so throughc 
linder of this paper. Using the Ή condition, we can express AT{*A)as 

= Σ ^ Ψ ^ Σ ψ ή - ^ 0 ^ ) ] ( 4 3 b ) , 

where we have explicitly eliminated al l one center integrals in the difference to the 
right Taking the second derivative, we get 

(44a). 

In equation 44a, the second and third term would require the evaluation of the 
Laplacian of derivatives of molecular orbitals, V 2(<?y^/dX). To avoid this, we 
rewrite these terms using Ή , and obtain 

4 r c x , x r . > = ^ { / ^ ) < ^ ) | Γ | Χ ψλ -(Ψ?ΛΚΥΛ)\Τ\Ψ*) 

Λ (44b). 

-(Ψ1*'Μ·)\τ\ψή+h ΨΙχ^\τ\ψ^ 
\ G Ι A=*J 

The subscript A-B in equation 44 indicates that the appropriate terms only contribute 
to one center second derivatives. 

The terms AV, AEXC, and R{X), are treated in a similar fashion. The term VPQIR 

depends on the coordinates for a given atom pair [AB] only through the interatomic 
distance Therefore, the electrostatic interaction energy can be precalculated for 
each pair of elements on a grid as a function of R^- Values for VPAIR and its 
derivatives are retrieved by an interpolation procedure. 

4.2Implicit contributions to the second derivatives. The term \E(*S
A) + Ε*ΧΑΥ'] 

essentially evolves the evaluation of the implicit derivative of the electron density. 
Writ ing the electron density in P-matrix formalism 

n H f 2Λί 2M 1 2M2M 

P=ΣΨΙΨΙ=ΣΙ Σ^Κ Σ^Κ \=ΣΣΛ- · Λ Α ( 4 5) 
i i [ μ ν J μ ν 

^ v = É c ^ v ( 4 6 ) , 
ί 

the implicit derivative of the electron density takes on the form 
2M 2ht 

ΡΙΪ'] = ΣΣ^']-ΚΚ ( 4 7 ) . 
μ ν 

The implicit derivative of the P-matrix is a result of the solution of the C P K S -
equations, and can be calculated as 
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162 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

occ occ 

» J 
occ vir 

^ Σ Σ Ι ν ^ + ν ^ ' Μ 
J 

occ vir 

i a 

The mixed second derivative is easily obtained as 
2M 2M 

(48). 

p ( x . « r . , = γ ^ ρ ν ^ χ ^ + λ Λ ) λ J ( 4 9 ) . 
μ ν 

We further require the derivatives of the orbital energies ε,. These are also available 
from the solution of the CPKS equations, and can be calculated as 

er,§=FYJ-SY'e, (50). 
P PP PP P 

5. Performance of the Implementation 

Analytical second derivatives are of practical use only i f they can compete with a 
corresponding numerical approach. We will therefore compare the efficiency of our 
present implementation with that of the finite difference technique. It is important to 
keep in mind that the execution time greatly depends on the accuracy inflected on the 
integration scheme. As discussed above, the ADF program uses fully numerical 
integration for most integrals, and the execution time is linearly proportional to the 
number of integration points. Here, we employed an integration scheme which 
ensures six digits of numerical accuracy for scalar matrix elements. In Table I, we 
present timings for the evaluation of the explicit contributions due to sections 4.1. For 
all the systems under investigation, the analytical evaluation roughly affords a speed
up by a factor of ten. We also observe that the execution time for this part scales with 
Ν2, Ν being the number of nuclei in the system under investigation. For this part, the 
size of the basis set is of minor importance. 

Table I: Execution times8 for the analytical and finite difference evaluation of 
the explicit contributions to the second derivatives 
System*» Analytic Finite Difference0 Ratio 
N H 3 - dzpd 139 1776 12.8 
SF 6 -dzp 1728 15834 9.2 
QHgO-dze 4963 60606 12.2 
Ni(CO)4tzpf/dzp 7113 83268 1L7 
a In seconds. Timings were obtained on an IBM RS6000 model 375 workstation. *>Α11 systems were 
calculated in C\ symmetry.cBased on 2-point numerical differentiation. ddzp: double ζ basis with one 
p,d or f polarization function. edz: double ζ basis, ^tzp: tripple ζ basis with one p,d or f polarization 
function. 

It is of further interest, how the evaluation of the implicit and explicit 
contributions compares with time used to solve the CPKS-equations. Appropriate 
timings are reported in Table Π. When a larger basis set is employed, as in the cases 
of NH3 and SF6, the solution of CPKS-equation is the most expensive part in the 
evaluation of the second derivatives. Thus, the time advantage decreases to a factor of 
8.0 and 4.5, respectively. On the other hand, with a small basis set, an excellent 
speed-up can be achieved for the CPKS-part. For tetrahydrofurane, (QHsO), we 
found that the analytical evaluation of the derivative of the electronic density should 
be about 28 times faster than the finite difference approach. 
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Table Π: Analytical vs. numerical Kohn- Sham second derivatives. Execution 
times8 

Systemb CPKS Implicit Explicit Total Finite Diff. Ratio 

N H 3 - dzp 
SFg-dzp 
QHgO-dz 

425 
9092 
3011 

260 
1328 
4606 

139 
1728 
4963 

824 
12148 
12580 

6624 
54642 
193752 

8.0 
4.5 
15.4 

a In seconds.b For details, compare Table I. 

Considering the complete analytic second derivative, one finds that in this case the 
number of nuclei Ν dominates, and the evaluation of the implicit and explicit 
contributions takes more time than the CPKS solution. One reason for this fact is the 
extensive use of TI in our derivation, which approximately doubles the computational 
effort. In total, the overall achievement in performance still amounts to a factor of 15. 

When making a fair judgment of the timings presented, one should keep in mind 
that symmetry has not been used in the present calculations. The symmetry advantage 
for the finite difference calculation is determined by the ratio of all displacements and 
the symmetry unique displacements. For the analytical evaluation of the second 
derivatives, the cost of executing some subroutines cannot be reduced when only 
symmetry unique displacements are considered. It thus can be expected that the 
speed-up wil l somewhat decrease when symmetry unique displacements are 
considered. Nevertheless, the results presented here more than justify our 
implementation of the analytic second derivatives. 
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Chapter 12 

Decay of Correlations in Bulk Fluids 
and at Interfaces: A Density-Functional 

Perspective 

R. Evans and R. J . F. Leote de Carvalho 

HH Wills Physics Laboratory, University of Bristol, 
Bristol BS8 1TL, United Kingdom 

Density functional methods can be used to show that for classical fluids with 
short-ranged interatomic potentials the length scales which describe the 
asymptotic decay of the one-body density profile at a fluid interface are the 
same as those which determine the decay of the two-body correlation function 
g(r) of the bulk fluid. This general result has striking implications for a 
variety of interfacial properties - the possible occurrence of oscillations in the 
liquid-vapour density profile, the occurrence of wetting and layering phase 
transitions at substrate-fluid interfaces and the nature of the decay of the 
solvation force for a confined fluid. For fluids whose potentials have power
-law decay the density profiles and g(r) exhibit power-law decay at longest 
range. However, for l iquid densities the intermediate range damped 
oscillatory decay is governed by the same leading-order pole structure that 
describes short-ranged forces. Recent work on the decay of correlations in 
binary liquid mixtures and in ionic fluids is also described. 

Consider a simple (atomic) fluid adsorbed at a solid substrate or wall . The average 
(one-body) density profile p(r) w i l l usually exhibit pronounced structure reflecting 
the ordering or layering that arises from packing effects, ie. from short-range 
correlations between the atoms. The precise form of the density profile must depend 
on the details of the wall-f luid potential V(r), the fluid-fluid interatomic potential 
and the thermodynamic state point. If the bulk fluid is a high density liquid a large 
number of oscillations develop in the profile, whereas i f the bulk is a dilute gas, and 
there is incomplete wetting of the wall-gas interface by l iquid , only a few 
oscillations, close to the wall , should occur. One might expect that the asymptotic 
decay of the profile into the bulk fluid far from the wall should be less dependent on 
the precise form of V(r) ; rather it should be determined primarily by the properties 
of the bulk fluid. Recent work has sought to elucidate different classes of 
asymptotic behaviour and the physical factors which determine these. A key result, 
obtained from density functional techniques, is that for short-ranged interatomic 
potentials the length scales which determine the longest range decay of a planar wal l -
fluid interfacial profile are identical to those which characterise the longest range 
decay of the radial distribution function g(r) of the bulk liquid. Thus, determining 

0097-6156/96/0629-0166$15.00/0 
© 1996 American Chemical Society 
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12. EVANS & LEOTE DE CARVALHO Decay of Correlations in Bulk Fluids 167 

the different classes of asymptotic decay for g(r) is sufficient to determine the decay 
of planar interfacial profiles. This observation has important consequences for a 
variety of fluid interfacial phenomena. It leads to predictions for the existence (or 
non-existence) of oscillations in the density profiles at liquid-vapour and liquid-
liquid interfaces and in the solvation force for fluids confined between two parallel 
walls. It also has implications for wetting and layering transitions at wall-fluid 
interfaces. In this lecture we review several aspects of the general theoretical 
framework for describing the decay of inhomogeneous fluid structure in terms of the 
decay of g(r). The presentation is necessarily brief; further details of the theory and 
results of calculations can be found in (1 - 4). 

Asymptotics of the Bulk Pair Correlation Function g(r) for a Pure 
Fluid. 

The asymptotic decay of g(r) is most easily determined from the (bulk) Ornstein-
Zernike (OZ) equation, which relates the total pair correlation function 
h(r) =g(r) - 1 to the direct correlation function c(r). In Fourier space this is: 

h(q)=-3sL=if—k i l (i) 
W \-pc{q) p{\-pc{q) J ( ) 

where p is the number density and A denotes the Fourier transform. It follows that 

We must distinguish between fluids for which c(r) is short ranged (finite ranged or 
exponentially decaying) and those for which c(r) decays as a power law. Recall 
that for fluids away from their critical points, diagrammatic analysis shows that 

c(r) —» - /J0(r) as r —> °°, where β = (kBT)~l and 0(r) is the interatomic pairwise 
potential. 

Short-Ranged Potentials. I f c(r) decays faster than a power law it follows 

(1-4) from equations 1 and 2 that the asymptotics of rh(r) are determined 

completely by the poles of h(q) at complex q=a= α, + ι α 0 satisfying 

1 - pe(a)=0 (3) 

There can be no poles lying on the real axis apart from the liquid-vapour spinodals 
(a=0) and an infinite ranged oscillatory solution (4) often found at very high 

density [aQ =0,α, Φ θ) . A pole can lie on the imaginary axis where it gives rise to 

pure exponential decay of rh(r), or poles can lie off the imaginary axis where they 
yield exponentially damped oscillatory decay. In the latter case the poles occur as 
conjugate pairs: a = ± a , + i a 0 . Once the poles have been determined (from 
knowledge of c(q) at a given p, Τ ) contour integration can be used (2,3) to obtain 
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168 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

η 

where qn is the η th pole and Rn is the residue of qc(q) / ( l - pc(q)) at qn. For the 
model potentials and the closure approximations that have been studied there is an 
infinite number of poles but the longest range part of h(r) is determined by the pole 
or poles with the smallest value of cc0, the inverse decay length. Two scenarios are 
found: (a) a pole lying on the imaginary axis qn =ia0 has the lowest value and the 
ultimate decay is purely exponential 

rh(r) ~ Ae " e ° r , r - » oo (5) 

or (b) a conjugate pair of poles has a smaller imaginary part ά0 than that on the 
imaginary axis and the ultimate decay is 

rh(r) ~ Âe~ a ° r cos (a,r - θ), r oo (6) 

where Θ is a phase angle. The amplitudes A and λ and the phase are given in 
terms of the residues. The line in the p, Τ plane where ά0 =a0 marks the 
crossover, at longest range, from damped oscillatory to pure exponential decay of 
rh(r). This is referred to as the Fisher-Widom (FW) line after the authors who first 
surmised such crossover should occur (5). Crossover arises as a result of 
competition between repulsive and attractive components of the interatomic potential. 
A t high Τ and p repulsion dominates (the negative portion of a typical c(r)) whereas 
at low Γ and p attraction dominates (the positive portion) (1). 
The F W line has been calculated (7) for a ( σ , 3 σ / 2 ) square-well fluid of well-depth 
ε, using a random phase approximation for the direct correlation function: 

<r) = cjr)-frjr) (7) 

with <l>att{r) = -e for r<3a/2 but zero otherwise. The hard-sphere direct 
correlation function (r) was obtained from the weighted density approximation 
of Tarazona. Very similar results are obtained using the Percus-Yevick 
approximation for c^v(r) (7). The F W line intersects the l iquid branch of the 
liquid-vapour coexistence curve at T= 0.9 Tc, where Tc is the bulk crit ical 
temperature, and it lies above the l iquid spinodal (7). A s the random phase 
approximation is a very crude theory of short-range correlations and the square-well 
model is an extreme idealisation of a fluid pair-potential, subsequent calculations 
were carried out for the more realistic Lennard-Jones 12-6 potential, truncated and 
shifted at Rc = 2.5 σ . The calculations (3) were based on the H M S A closure of 
Zerah and Hansen (6), which interpolates between the hypernetted chain ( H N C ) 
and soft-mean-spherical approximation ( S M S A ) . This integral equation approach 
imposes self-consistency between the virial and compressibility routes to the 
equation of state and comparisons with simulation data suggest that it is one of the 
most reliable and accurate modern liquid state theories (see (6) and references in 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 9

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 5
, 1

99
6 

| d
oi

: 1
0.

10
21

/b
k-

19
96

-0
62

9.
ch

01
2

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



12. EVANS & LEOTE DE CARVALHO Decay ofCorrelations in Bulk Fluids 169 

(5)). Figure 1 shows the results for the F W line, plotted along with the coexistence 
curve obtained from simulation (7). The F W line has the same location with respect 
to the coexistence curve as that found earlier (7) for the square-well. It intersects the 
l iquid side at Τ = 0.9 Tc and at a similar value of p / p c , where p c is the critical 
density. The shapes of the two lines are also quite similar, although the square-well 
F W line crosses the critical density at a lower temperature (T/Tc~\.$) than that 
inferred from extrapolation of the line in Figure 1. On the basis of these two sets of 
results it was conjectured that the F W line for any reasonable finite-ranged pair 
potential model f luid would have much the same form when plotted in terms of 
reduced variables 77 Tc and pi pc, ie. it would obey (at least approximately) a law 
of corresponding states. Further calculations, for different types of potentials, are 
required to test this conjecture. 
The pole structures obtained in the two sets of calculations differ in detail, reflecting 
the different types of approximation and the fact that the Lennard-Jones potential has 
a soft core. However, in both cases and for all thermodynamic state points that were 
considered, the dominant poles are the one on the imaginary axis and a conjugate 
pair with ~2π/σ. These have values of a0 that are much smaller than those 
of the other poles. The latter are all much further from the real axis than the 
dominant poles. This observation implies that for large r , an accurate 
approximation to rh(r) should be obtained by retaining only the contributions of the 
dominant poles in equation 4. A l l poles that have been calculated are simple poles so 
that the residues and, hence, the amplitudes and phase are easily obtained (2,5). 
Comparison of numerical results for h(r) from the ful l solution of the H M S A 
integral equation with those obtained by retaining only contributions from the pure 
imaginary and the first conjugate pair of complex poles show the above surmise to 
be correct. The quality of the fit to the full solution is remarkable (3). For densities 
on either side of the F W line the results from the 'two-pole* approximation are 
almost indistinguishable from the 'exact' results for r > 3 σ. Moreover, at 
intermediate range, 1.5σ <r< 3σ, the oscillations in h(r) are well-reproduced v/ith 
errors of only a few percent. A similar level of success is achieved for the square 
well-fluid in the random phase approximation (2). The 'two-pole' approximation 

r / i ( r )~ Ae~a°r + Â é f ^ c o s ^ r - 0 ) (8) 

appears to provide an excellent description of the intermediate as well as the long 
range decay of h(r) in the case of fluids with short-ranged potentials. 

L o n g Ranged Potentials. In real fluids dispersion (London) forces are always 
present and these have a profound effect on the asymptotics of correlation functions. 
For simplicity we restrict consideration to the case of a (model) fluid where only the 
induced-dipole-induced-dipole contribution is retained so that the pairwise potential 
decays as </>(r)—a6lr6, with a6 positive. Retardation is ignored also. 
Incorporating extra power-law contributions and crossover effects associated with 
retardation is possible (3) but complicates the analysis. 
The presence of the -a61 r6 tail of the potential gives rise to a positive tail βα61 r6 in 
c(r). This, in turn, yields a q* term in the Fourier transform c(q) (8,9), so that for 
positive real q 
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MONOTONIC OSCILLATORY 

0.1 0.2 0.3 0.4 
P* 

0.5 0.6 0.7 0.8 

Figure 1. The FW line for a Lennard-Jones fluid (with/?c =2.5σ) calculated 
from the HMSA. On the dashed portion the pressure is positive, whereas on 
the dash-dotted portion it is negative. The solid curve joining triangles denotes 

simulation results for the liquid-vapour coexistence curve. Γ* s kBTle and 

p* =ρσ3 are the reduced temperature and density. D
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c{q) = c'\q) + & & - (9) 

where csr(q) is the Fourier transform of a short-ranged function possessing an 
expansion in powers of q2. Equation 9 follows explicitly in the random phase 
approximation (equation 7); more sophisticated closures could yield further odd 
powers of q, eg. a term in q9 (3). The q3 term is the key signature of dispersion 
forces. If the potential is truncated, as in computer simulation, there is no q3 term 
and the pole analysis described above is appropriate. However, when the q3 term is 
present that analysis must be modified and a different contour must be chosen for 
performing the integration in the complex plane (3). Poles stil l occur, given by 
equation 3, but now there are no poles on the imaginary axis. For a specific choice 
of contour an approximation for the decay of h(r) can be obtained (5) : 

rh{r) ~ 5 2 (0) j3^- + Ae " α ° Γ c o s ( a , r - 0 ) (10) 

where 5(0) = ( l - pc(O))"1 is the q = 0 limit of the liquid structure factor. Note 
that 5(0) = ρβ~ικτ where κτ is the isothermal compressibility. The ultimate decay 
of h(r) is always determined by the first term in equation 10 and this reflects 
directly the q3 term in c(q). For a general power-law potential the ultimate decay is 
/ i (r ) -» - /K 2 (O)0 (r ) , as r - » « > ( # ) . The second term in equation 10 is the 
contribution from the (complex) pole with the smallest value of a0. This pole is 
expected to have αχ~2πΙσ. Other poles w i l l make further damped oscillatory 
contributions but, provided they are well-separated, the leading-order pole should 
give the dominant oscillatory contribution. 
Those readers with interest in the history of liquid state science might note that it is 
thirty years since Enderby et.al. (8) properly identified the ultimate power-law 
decay of h(r), fol lowing an earlier observation by W i d o m (70) .Verlet, in his 
famous 1968 paper (77) on the molecular dynamics of the Lennard-Jones fluid, was 
probably the first to enquire just how damped oscillations, which must occur at short 
and intermediate range, can be separated from the ultimate power-law decay of h(r). 
W e believe equation 10 is the appropriate prescription. How accurate is this 
approximation? This question was examined at some length in reference (3). 
Explicit calculations, within the random phase approximation, for a model potential 
with hard-sphere repulsion and an attractive -a6/r6 tail show that equation 10 
provides a very accurate fit to the 'exact' h(r), obtained from numerical Fourier 
transform of h(q) given by equation 1, for r>2a. A t high densities a0 is not 
particularly large and 5(0) is small, with the result that the second term in equation 
10 dominates until τ ~ 2 5 σ , after which the power-law decay takes over. A t low 
densities aQ is much larger and 5(0) is increased, so that the oscillations in h(r) are 
eroded much faster than at high densities (3). 
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Comparing equations 8 and 10 it is clear that the most significant difference between 
short and long-ranged potentials is the replacement of the pure exponentially 
decaying term by a power-law contribution. A s a consequence no sharp F W line 
can be defined in the long-ranged case, since there can be no crossover from pure 
exponential to damped oscillatory decay at any range; recall that there is no pole on 
the imaginary axis. However, this does not mean that intermediate-range 
structure w i l l not reflect the thermodynamic state. A s indicated above, at high 
densities the second term of equation 10 provides a very accurate description of 
intermediate range oscillatory structure of h(r) and the power-law contribution does 
not manifest itself until very large separations. A t lower densities the damped 
oscillatory term decays much faster and the power-law contribution has a larger 
amplitude (controlled by 5(0)) thereby reducing the number of discernible 
oscillations. While there is no sharp F W line, there should be a crossover region in 
the p,T plane which marks the erosion of oscillations at intermediate range. 
Support for this view can be gleaned from two sources: (a) results for h(r) 
extracted from neutron-diffraction data taken for Ne and X e along their saturated 
l iquid curves (72) shows that intermediate range damped oscillatory decay persists 
up to T~0.95TC, whereas for higher temperatures the oscillatory decay seems to 
disappear, (b) early calculations of h(r), based on the optimised cluster theory, for 
the ful l Lennard-Jones potential indicated crossover from damped oscillatory to 
monotonie decay at intermediate range as the density was reduced (13). For a given 
p ,Γ one can estimate the separation rat which the oscillations w i l l become 
indiscernible by equating the magnitudes of the two terms in equation 10. 
In computer simulation the pairwise potential is necessarily truncated. For the 
Lennard-Jones fluid the cut-off separation is often Rc=2.5a or 3.0σ. Such a 
short-ranged model w i l l only have the same intermediate range oscillatory structure 
as the full Lennard-Jones potential i f the dominant complex poles (near αχ=2π/σ) 
of both models lie very close together and the corresponding residues are very close. 
Results, based on the random phase approximation, suggest that this is indeed the 
case (3). 

Asymptotics of hy(r) for a Binary Fluid Mixture. 

The analysis described in the previous section can be extended to mixtures. The 
generalisation of the O Z equation can be expressed as 

h^N^IDiq) (11) 

where i, j runs over the species labels. Although the numerator (q) is different 
for different correlation functions, the denominator D(q) is common. It follows 
that all the hy(q) exhibit the same pole structure, determined by the zeros of D(q). 
Thus, for short-ranged potentials, 

where the (common) w t h pole is given by D[qn)-0. Only the residues R^1 and 
hence, the amplitudes, differ for different combinations of species. Since the 
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longest range part of h^r) is determined by the qn with the smallest imaginary part, 
a l l hi}(r) w i l l ultimately decay with the same exponential decay length and 
oscillatory wavelength. This fact appears to have been appreciated first by Martynov 
(14) but was first explained in (2). 
The pole structure in a mixture should be similar to that in a pure fluid so that, for 
short-ranged potentials, there should be a unique F W surface in thermodynamic 
phase space separating regions of longest range pure exponential decay from those 
of exponentially damped oscillatory decay, applicable for a l l the hi}(r). If the poles 
are simple, the formulae for the residues Rjj allow one to derive simple relations 
linking the amplitudes associated with the decay. For the particular case of binary 
mixtures, where i,j run over the species a and b, one finds for pure exponential 

decay 
r h ^ ^ A ^ (13) 

with 
4 * ^ = 4 , * . (14) 

Whereas for damped oscillatory decay, where a conjugate pair contribute, 

r ^ W ^ ^ . ^ c o s ^ r - e . . ) (15) 
with 

ÂmÂbb=Àal (16) 
and 

0 . + β » = 2 β , * (17) 

Explicit formulae for the amplitudes Atj and phases 0 t > can be derived (2). 
The results expressed in equations 13 to 17 are very general. They should apply for 
the longest range decay of correlations in any binary f luid mixture where the 
interatomic forces are short-ranged. At first sight, the existence of a common 
asymptotic form is counterintuitive - especially when one contemplates mixtures 
with widely differing atomic sizes. It is not obvious that such mixtures should have 
hq(r) with a common wavelength and decay length. The accuracy of equation 15 
has been examined for hard-sphere mixtures in the Perçus-Yevick approximation. 
For a variety of extreme concentrations and ratios of hard sphere diameters, equation 
15, corresponding to a single conjugate pair of complex poles, yields hi}(r) that are 
very close to the results obtained from numerical Fourier transform of the O Z 
equations - at least for separations beyond the second maximum. Even the positions 
of the first and second maxima are given reliably (2). In other words the decay and 
the amplitude and phase relations are obeyed for separations down to second nearest 
neighbours. Note that the amplitude relations in equations 14 and 16, which have 
the form of a geometric mixing rule, hold irrespective of the mixing rule for the 
strength of the ab attractive potential and that for the effective range of the ab 
repulsion. The details of the chemistry do not matter - provided the relevant poles 
are simple. 
D o these results have relevance for real (atomic) mixtures where dispersion forces 
are present? If there are well-separated pole structures for binary mixtures (which 
we expect) the contribution from the pole with the smallest value of a0 w i l l dominate 
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the intermediate range decay of h^r) and the remarkable relations expressed in 
equations 13 to 17 should hold over a similar (intermediate) range to that found for 
the pure fluid. Thus, it is feasible that these results could provide some new insight 
into the interpretation of structural data (from neutron and X-ray diffraction) on 
binary mixtures. 

Ionic Liquids. The analysis described above is not immediately applicable to an 
ionic l iquid. In such systems the existence of the long-ranged Coulomb forces 
between the ions means that the direct correlation functions c^r) decay very 

slowly, as r~\ for large r. Thus, a priori , it is not obvious that the pairwise 
correlation functions hg(r) in a binary ionic l iquid , such as a molten salt or a 
(primitive) electrolyte, should exhibit the same type of decay, with the same 
amplitude and phase relations, as those (equations 13 to 17) which characterise a 
binary neutral mixture. That this is the case, is a consequence of electrostatic 
screening. The O Z equations for an ionic mixture are the same as those for any 
mixture but now the Fourier transforms of the c f >(r) must be separated into 
Coulombic and non-Coulombic terms: 

where eZ+ is the charge on the positive ion, eZ_ is that on the negative ion and 
ε = 4 π ε 0 ε Γ , with er the relative permittivity. Such a division follows naturally in a 
density functional approach where the intrinsic free energy functional is written as 
the total electrostatic energy plus a remainder. c^(q), which is analytic in q2, 
denotes the short-ranged, non-Coulombic contribution; dispersion forces are not 
considered here. It is straightforward to show that the O Z equations can be written 
in the form of equation 11, with suitable definitions of Ntj(q) and D(q) (75). 

The pole structure of an ionic liquid is different from that of its neutral counterpart. 
This is most clearly illustrated for the special case of a symmetric binary fluid where 
the ++ interionic potential is equal to the - potential, so that h++(r)=h__(r). Then 
there are only two independent pair correlation functions: hs=(h+++h+_)/2 and 
hD=[h++ - Λ + _ ) / 2 . hs measures correlations in the total number density and hD 

measures correlations in the charge density. The poles of hs(q) (density) and of 
hD(q) (charge) are given by independent equations and are determined by different 
physical considerations (75). Density poles exhibit similar structure to that found in 
a single-component neutral fluid and cross-over from pure exponential to damped 
oscillatory decay of rhs(r), as the density of ions is increased at fixed Τ, occurs by 
the same mechanism as in the neutral fluid giving rise to a F W line. The charge 
poles behave differently. These depend primarily on the inverse Debye screening 

ι 
length κ0=(4πρβ(Ζβ)21 ε ) 2 . Crossover from pure exponential to damped 
oscillatory decay of rhD(r) occurs at a particular value of KD v ia a coalescence of a 
pair of pure imaginary poles followed by fission into a conjugate complex pair 
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(75). Such a mechanism was first described by Kirkwood (76) in a discussion of 
charge oscillations in strong electrolytes. The locus of points in the p,T plane 
where crossover occurs to charge oscillations at longest range is termed the 
Kirkwood (K) line. Figure 2 shows the results (75) of calculations of the FW and 
the Κ lines for the restricted primitive model (RPM), ie. charged hard-spheres of 
equal diameter R, based on the generalised mean spherical approximation (GMS A) 
which is the simplest thermodynamically self-consistent theory for an ionic liquid. 
Within the GMSA, crossover to charge oscillations is determined by the condition 
K D R = 1.228 so the Κ line is a straight line in the p,T plane - see figure 2. It 
intersects the vapour branch of the coexistence curve close to the critical temperature. 
The FW line intersects the liquid branch but at a lower value of TITC than that in 
figure 1 for the (truncated) Lennard-Jones fluid. By combining results for the 
density and charge poles one can ascertain which of these determines the ultimate 
decay of h^(r) and h+_(r). A variety of crossover lines emerges (see figure 7 of 
(75)). These separate regions of the phase diagram where the decay of ion-ion 
correlation functions are dominated by monotonie charge, monotonie density, 
oscillatory charge or oscillatory density poles. The results suggest that 1:1 primitive 
model electrolytes should exhibit a different sequence of crossover, as the density of 
ions is increased at fixed 7\ from 2:2 electrolytes. Since leading order asymptotics 
provide an accurate description of both hD(r) and hs(r) for r>\.5R, the results 
also yield some fresh insight into the nature of density and charge oscillations for 
molten salts. 

Asymptotics of Wall-Fluid Interfacial Profiles. 

We now discuss the repercussions of the results obtained for the behaviour of bulk 
correlation functions for the density profiles of fluids at interfaces. That there 
should be direct repercussions follows from the fact that the radial distribution of the 
bulk fluid g(r) = p(r)fp, where p(r) is the (inhomogeneous) density profile 
obtained by fixing an atom at the origin, thereby creating a spherically symmetric 
'external' potential V(r) for the other atoms. (In the special case of pairwise 
potentials V(r) = 0(r) ). In other words g(r) can be regarded as a one-body density 
profile associated with a particular type of inhomogeneity. One might suppose that 
other types of external potential might give rise to the same type of asymptotic 
decay of the density profile - provided the external potential is sufficiently short-
ranged. As an example consider a pure liquid in a bulk state which is on the 

oscillatory side of the FW line. Then h(r) decays as in equation 6. I f the wall-
fluid potential V(z), where ζ is the distance normal to the wall, is of finite range the 
density profile for this interface should decay as 

p{z)-p ~ A^e-a°zcos(a1z-diyf), z - » ~ (19) 

where p is the bulk density. a0 and ax are the same inverse length scales which 

determine the decay of rh(r). The amplitude and phase will be different 

from the corresponding bulk quantities in equation 6; they will depend on the form 

oiV(z). 
Equation 19 was derived starting from the exact integral equation for the density 
profile in planar geometry (4). A somewhat more revealing derivation can be 
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0.12 

0.1 Κ \FW 

0.08 
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0.04 -

0.02 I 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
Ρ* 

Figure 2. Cross-over lines for the R P M calculated using the G M S A . The 
short-dashed curve is the F W line where cross-over from monotonie to damped 
oscillatory decay occurs for the total number density correlation function hs(r). 
Onset of charge oscillations, in hD(r), occurs on the dotted line K . The solid 
line is the liquid-vapour coexistence curve and the long-dashed line marks the 
accompanying spinodals. T* = kBTeR/(eZ)2 and p* = pR3 are the reduced 
temperature and total density. 
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obtained from density functional theory. The density profile of an inhomogeneous 
fluid subject to an external potential V(r) satisfies the exact Euler-Lagrange equation 
(see eg. (77) or (18)) 

M=V(rO + ^ a ( p ( r 1 ) ) - i 8 - 1 c « ( ( p ] ; r 1 ) (20) 

where μ is the chemical potential, μίά(p) = β~ι 1η(Λ3ρ) is the chemical potential of 

the ideal classical gas, and c ( 1 ) , the one-body direct correlation function, is the first 
derivative of the excess (over ideal) Helmholtz free energy functional 7^x[p] : 

c<"([p];r) = - / ^ (21) 

note that - j 3 _ 1 c ( 1 ) is the classical analogue of the effective one-body potential that 
enters the Kohn-Sham theory of the inhomogeneous electron gas. Since we are 
concerned with the limit where p ( r ) - » p , we Taylor expand about the bulk in 
powers of δρ(τ)=p(r) - p. Outside the range of the external potential 

Sp(r, ) = p jdr2 5p(r 2 ) c(rn ) + 0 ( φ ) 2 (22) 

where 

^ ( 1 ) ( [ p ] ; η ) 
c 

8p(r2) 
(23) 

is the two-body direct correlation function of the homogeneous bulk f lu id , 
r 1 2 = |r2 - r j and use has been made of the relation j3 _ 1 c ( 1 ) (p) = μίά(p) - μ. 
The complex Fourier transform of equation (22) is 

0=(l-pc(q))êp(q) + 0(5p) 2 (24) 

It fo l lows that the ultimate asymptotic decay is determined by zeros of 
( l - pc(q)) w i t h q=a, i.e. the same condition as equation 3, which was derived 
from the bulk O Z equation. B y specialising to planar geometry one can show that 
equation 19 satisfies equation 22 in lowest order. Similarly for a spherical external 
p o t e n t i a l one can show that this equat ion has a s o l u t i o n 
Sp(r) ~ Ase~a°r c o s ( a x r - d s ) l r . A n equivalent argument goes through for 
thermodynamic states where the bulk lies on the monotonie side of the F W line; the 
decay of δρ(ζ) or rSp(r) is now pure exponential. Note that equation 24 
corresponds to a linear response treatment so on its own it is insufficient to 
determine amplitudes and phases. These can only be extracted from a full non-linear 
treatment of the density profile, i.e. by solving equation 20 having obtained c ( 1 ) from 
a specific density functional approximation for 7; x[p]. Moreover the above results 
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are not appropriate for power-law potentials or for exponential wall-fluid potentials 
whose decay length is longer than that of c(r) . 
The results generalise to mixtures. Once again the pole structure is determined by 
the zeros of the same common denominator that enters equation 11 and the 
asymptotic decay of the density profiles of individual species p,(z), outside the 
range of the wall- f luid potentials V^(z), is characterised by the same exponential 
decay length and oscillatory wavelength. Relations between the amplitudes of 
Sp(zi) follow from the residues (2). A n alternative procedure, which leads to the 
same results, makes use of the wall-particle O Z equations obtained from the bulk 
mixture O Z equations in the limits where the density of one component —>0 and its 
diameter Details are given in (2) and (79). The amplitudes are now given 
formally in terms of the wall-particle direct correlation functions but these can only 
be obtained by making specific closure approximations. 

Density Functional Treatment of the Planar Liquid-Vapour Interface. 

In this section we consider the liquid vapour interface of a simple fluid, described by 
a short-ranged interatomic potential, in the presence of a weak stabilising 
(gravitational) field. Suppose that the temperature Τ lies below that for which the 
F W line intersects the bulk liquid coexistence curve, e.g. below 0.9TC in figure 1. 
If we regard vapour as exerting a particular type of 'external' field on an atom deep 
in the l iquid, we might expect the density profile p(z) at the interface to exhibit 
damped oscillatory decay into the bulk saturated liquid of density Pi(T). The 
general arguments outlined in earlier sections imply that the exponential decay length 
and the wavelength of the oscillations should be determined by equation 3, i.e. by 
c(r) in the saturated liquid. Since vapour always lies on the monotonie side of the 
F W line, the profile should decay exponentially into vapour for all 7\ with the 
decay length set by c(r) of the saturated vapour of density pv(T). On the other 
hand, for TC>T>0.9TC the saturated liquid lies in the monotonie region and the 
decay of the profile into the l iquid should be pure exponential. O f course, the 
general arguments make no statement about the amplitude of any oscillatory 
contribution to p(z). We might expect this to be smaller than for h(r) or for w a l l -
f luid interfaces, since a low-density vapour must exert an effective field which is 
much weaker than that due to a fixed atom or a rigid wall . Moreover, the l iquid-
vapour interface cannot be regarded as being strictly equivalent to a wal l - l iquid 
interface. Capillary-wave fluctuations play an important role in the former but not at 
the latter - at least in the absence of complete wetting by vapour - and that is why it is 
necessary to apply a stabilising field. Nevertheless, i f one adopts a mean-field 
description of the ' intrinsic ' or 'bare' interface and then attempts to include the 
effects of fluctuations subsequently, it is possible to investigate oscillatory structure. 
Density functional theories are the obvious means of calculating the equilibrium 
density profile. If oscillations are present they should be exposed by those 
approximations which provide an accurate description of packing effects. This 
requires a non-local treatment of repulsive forces between atoms. A local treatment 
w i l l never yield oscillations. Note that all density functional approximations are 
mean-field-like in that they omit effects of fluctuations on the profile (18) 
In order to test the above predictions density functional calculations were performed 
for the square-well fluid (7) using the weighted density approximation ( W D A ) to the 
hard-sphere (hs) free-energy functional developed by Tarazona (20) and treating 
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attractive interactions between atoms in a mean-field approximation so that the 
intrinsic free energy functional is 

^p]=^[p]+îJJ*Wr î p(r , )p(r 2 )ΦΛΓη) (25) 

The two-body direct correlation function obtained by differentiating this functional 
twice and taking the limit of a bulk homogeneous fluid is that given in equation 7. 
Special numerical procedures (4) were used to obtain very accurate solutions of the 
Euler-Lagrange equation which results from minimising F\p\-μ^άτρ(τ) for this 

interfacial problem (1). For r = 0.738r c , a temperature for which the saturated 
liquid is well inside the oscillatory region, p(z) was found to exhibit oscillations on 
the liquid side but these are only visible at about lOOx the normal scale for plotting. 
High magnification data was fitted to the form p(z)-p^A^e'^ c o s ( a 1 z - 0 ) . The 
resulting values of a0 and a , are (within errors of the calculations) equal to those 
obtained from solutions of equation 3 with c(r) calculated consistently for the bulk 
saturated liquid. For a high temperature state Τ = 0.93TC, on the monotonie side of 
the F W line, oscillations could not be discerned even at the highest magnification 
and the decay of p(z) into bulk liquid was pure exponential (1). 
Although these results confirm the basic premise regarding the existence of 
oscillations in the liquid-vapour profile, they w i l l not inspire even the most ardent 
computer simulator or enthusiastic experimentalist to rush to seek the tiny wiggles. 
Figure 3 displays some more encouraging results. These refer to T = 0.64TC, a 
temperature somewhat above the triple point and one that is typical of those 
investigated in simulations. In this case the maximum amplitude of the oscillations, 
obtained from the density functional calculations, is about 2% of the bulk l iquid 
density. Were such oscillations to be present at a real fluid interface they should be 
detectable. However, as noted earlier, the calculations omit the effects of capillary-
wave fluctuations which act to smear out the oscillations that arise in the mean-field 
description. The other curve in figure 3 shows the weighted density profile p(z) 
obtained from the solution of the W D A equations. This quantity also exhibits 
oscillations, but with much reduced amplitude. It corresponds to averaging p(z), 
the dashed curve, over an atomic diameter σ and this mimics the local effects of 
interface wandering. p(z) is l ikely to provide some estimate of what might be 
observed in a computer simulation of the liquid-vapour density profile at low 
temperatures (1). 
Marrying the effect of fluctuations to an 'intrinsic' (mean-field) profile remains a 
difficult problem in the physics of interfaces (18). The simplest approach 
corresponds to a Gaussian smearing over the interfacial roughness ξ±. For an 
oscillatory profile tail with the form of equation 19 the wavelength 2πΙαχ and decay 
length a^x a r e unaltered but the amplitude is reduced by a factor 
exp 

[-(aAf'/2](2,21). A planar l iqu id -vapour interface which is at low 
temperature, and which is of macroscopic extent stabilised by earth's gravity, is 
usually estimated to have ξ± ~ one or two c(17). Since α, « 2 / τ 7 σ this factor is 
exp ( -2 ; r 2 ) or e x p ( - 8 ; r 2 ) , which is not very encouraging! Computer simulations 
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0.76-

P 

Figure 3. A section of the liquid-vapour density profile obtained from the W D A 
treatment of the square-well at 77T C = 0.64. The dashed curve shows the 
equilibrium profile, displaying oscillatory decay into liquid. The solid curve 
shows the corresponding weighted density profile p(z). ζ is given in units of 
σ and p in units of σ~ 3 . 
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offer a somewhat more attractive route since one can vary ξλ by varying the 
interfacial area, L 2 , available in a simulation. The roughness is given by (77) 

?M**ftYlÎ~dki (26) 

where / is the surface tension and the upper and lower cut-off are wavenumbers 
*π*χ = 2 π / σ and = 2πI Lx. This means that the amplitude of the oscillations 

should be reduced by a factor of (Lxla)~*'^ \ The larger the surface tension, the 
weaker is the dependence on the area. 
To the best of our knowledge, systematic simulations aimed at testing mis prediction 
have not been carried out for a pure fluid. (There is a long history of claims of 
highly pronounced oscillatory structure at a liquid-vapour interface. Most of these 
were based upon either dubious theories or incomplete simulations - see the 
comments in reference (7)). However, a very recent molecular dynamics simulation 
of the planar interface between two l i qu id phases has focused on this issue (22). 
The model is an equi-molar binary mixture in which the α α and bb interatomic 
potentials are identical, both are a truncated Lennard-Jones 1 2 - 6 potential, but 
phase separation is ensured by making the ab potential purely repulsive. 
Pronounced oscillations are found in the equilibrium density profiles. These are 
insensitive to the length of the simulation box Lz (normal to the interface) but their 
amplitude does depend on the area Ûx. Increasing the latter reduces the amplitude in 
a manner that is consistent with the power-law dependence predicted above (22). 
These results would appear to offer strong support for the physical picture that is 
presented here. 
H o w would the picture be altered by the presence of dispersion forces, ie. in a real 
fluid? Experience gleaned from investigating the pole structure associated with the 
oscillatory decay of h(r) suggests that oscillations, similar to those found for a finite-
ranged model potential, would still develop in the density profile on the liquid side 
of the interface but only at intermediate range. These would be damped by capillary-
wave fluctuations in the same fashion as described above. A t longest range, in the 
ultimate tails of the profile, the dispersion forces w i l l give rise to power-law decay 
of P(z). If the pairwise interatomic potential has an attractive -a6 lr6 tail then 

Pl-P(zhnpa6{Pl-Pv)(PS(0))j6z3 (27) 

This asymptotic result, like the corresponding result for h(r), dates from the 1960's -
see (23) and references therein. It is not known what effects fluctations have on this 
result. 

Impl i cat ions for W e t t i n g and L a y e r i n g Trans i t i ons . 

Theories of complete and critical wetting at wall-fluid interfaces in dimension d = 3 
depend on a correct identification of the asymptotic decay of the mean-field l iquid-
vapour density profile (24). Much of the subtlety and richness of these transitions 
stems from competition between capillary-wave broadening and underlying mean-
field structure. Almost all theories start from the premise mat the liquid-vapour 
density profile is monotonie. Often this is calculated from a square-gradient or 
Landau type approximation to the free-energy functional. In which case the profile 
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decays into l iqu id , say, as e x p ( - œ ) , where κ 1 is the O Z (second moment) 
correlation length of the bulk liquid. It is clear from the previous discussion that κ~ι 

is not the appropriate length scale. Even on the monotonie side of the F W line the 
inverse decay length a0 does not reduce to κ until very close to the critical point 
(25, 26). On the other side of the F W line the oscillations play a significant role. 
The binding potential W(l), which describes the surface excess free energy of a 
wetting f i lm of thickness / , is damped oscillatory rather than monotonically 
decaying, as is usually assumed. W D A density functional calculations for the 
square-well fluid, based on the functional of equation 25, at a square-well wall show 
that as a consequence of the oscillations in W(l), complete wetting at bulk 
coexistence is replaced by pseudo wetting (26). Instead of an infinitely thick f i lm of 
liquid wetting the wall-gas interface, a thick liquid f i lm with / - 12σ develops below 
T = 0.9TC. Only for higher temperatures, where oscillations disappear, does 
complete wetting occur. If a local density functional approximation were applied, so 
that oscillations could never develop, complete wetting would occur throughout the 
temperature range. O f course, this remarkable result is a prediction of a mean-field 
theory. Including the effects of the capillary-wave fluctuations for the wetting 
problem is non-trivial but it is likely that these can force the liquid to wet completely, 
even i f W(l) is oscillatory (26, 27). Nevertheless, it is clear that the temperature 
at which the F W line interesects the coexistence curve does have significance for 
wetting transitions in systems with short-ranged forces. (The temperature 
dependence of W(l) and its dependence on the pole structure is discussed further in 
(26).) Note that the binding potential for real fluids with dispersion forces must 
contain a term bl~2 ,withfc>0. Ultimately this term w i l l always dominate the 
exponentially damped oscillatory contribution and lead to complete wetting. 
also sets an upper bound for the occurrence of a sequence of discrete layering 
transitions between adsorbed liquid layers (28, 29). Such transitions can only occur 
i f W(l) exhibits oscillations. 

The Decay of the Solvation Force for Confined Fluids. 

Our work also has implications for the asymptotics of the solvation force fs(L) for a 
f luid confined between two identical planar walls, separated by a distance L. The 
solvation force is the difference between the pressure of the confined fluid and that 
of a bulk reservoir at the same temperature and chemical potential. It provides an 
important measure of the effects of confinement on the free-energy of the f luid and 
has been investigated in many simulations and in calculations based on density 
functional theories (18,30). It is well-known that fs exhibits pronounced oscillatory 
behaviour (with L) for high density liquids confined at small separations. These 
oscillations are a direct manifestation of packing constraints on the distribution of 
atoms. In the limit of large separation, L -> <», one might expect the decay of fs(L) 
to reflect the decay of the density profile p(z) of the confined fluid. For the 
particular case of a fluid confined by perfectly hard walls there is an exact result 
fs(L) = P~l(pL(0) - p^O)), where pL(0) is the density at contact. It is possible to 
argue (7) that for L -> <» ,pL(0) must decay in the same fashion as the profile at a 
single wall decays to its bulk value, which, we have established, is the same decay 
as that of rh(r). Attard et.al. (79) have analysed the solvation force within the 
context of wall-particle O Z equations. They show that the one-dimensional Fourier 
transform of the integral of fs(L) has exactly the same pole structure as that of h(q). 
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Thus, for finite ranged wall-fluid potentials and fluid-fluid interatomic potentials and 
L -> oo, fs(L) ~ e~a°L for states on the monotonie side of the F W line, whereas 

fs(L)~e~a°L cos(axL-0) on the oscillatory side - provided the states are 
sufficiently far from the critical point and there are no complications of phase 
transitions (7, 2). If dispersion forces are present, as they must be in real systems, 
fs(L) w i l l decay ultimately as L " 3 . However, for sufficiently high densities, there 
wi l l be exponentially damped oscillations at intermediate separations L whose decay 
length and oscillatory wavelength are determined by the leading order pole of h(q). 
In the case of confined fluid mixtures the decay of fs(L) is determined by the 
condition D(a) = 0 , ie. the same condition that determines the decay of a l l the 
h^r) - see equation 11. 
It is striking that a thermodynamic quantity (an excess pressure) should exhibit 
precisely the same decay laws (and crossover) as the interatomic correlation function 
h(r) and this attests to the universal character of the asymptotic decay of structural 
correlations - at least for systems with short-ranged forces. On the other hand, one 
should recall that the solvation force is merely a special case of a fluid mediated 
particle-particle interaction in which the size of the two particles is made 
macroscopic. 

C o n c l u s i o n s . 

The density functional theory of classical inhomogeneous fluids can be viewed as a 
descendent of that developed by Van der Waals in his 1893 treatment of the l iquid-
vapour interface (31). Modern weighted density approximations (18) go wel l 
beyond V a n der Waals ' ideas in that they include the effects of the short and 
intermediate-ranged correlations arising from packing of the atoms. This article has 
summarised some of the striking phenomena that occur when such correlation 
effects are included. For bulk fluids the main result is the existence of crossover 
lines - or disorder lines in magnetic terminology. Although no thermodynamic 
singularity occurs on crossing such a line (no phase transition) the correlation 
functions do change their character significantly. The repercussions for phase 
transitions at interfaces are not fully understood and certainly warrant further 
attention. The structure of the liquid-vapour interface is still of considerable interest. 
Very recent x-ray reflectivity measurements for liquid mercury indicate pronounced 
surface layering and point to a density profile with very large amplitude oscillations 
(much larger than those predicted for model atomic fluids) on the liquid side of the 
interface (32). It remains to be seen whether the asymptotic approach developed 
here can be extended to the case of l iquid metals and, indeed, to other types of 
fluids. 
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Chapter 13 

Expanded Density Functionals 

J. K. Percus 

Courant Institute of Mathematical Sciences and Physics Department, 
New York University, 251 Mercer Street, New York, NY 10012 

The free energy density functional format is increasingly used 
to represent the structure of non-uniform fluids i n thermal equil ib
r i u m . T h i s representation can often be simplified and extended by 
introducing in-principle extraneous densities with respect to which 
the free energy is stationary and, i f possible, a min imum. The v i r tua l 
necessity of such an expanded framework is i l lustrated for a periodic 
one-dimensional classical lattice gas, and its practical effectiveness 
attested to by the exact solution of a one-dimensional classical fluid 
wi th nearest neighbor interactions. A number of current approxi
mation methods, classical and quantum, are either i n this form or 
are shown to fa l l into it under slight reformulation. Identification of 
large scale excitations makes it possible to include their images in this 
framework, leaving only local fluctuations to be accounted for, and 
the possibi l i ty is raised of a meaningful density-effective potential 
joint representation. 

Real ist ic particle systems exhibit phenomenology on multiple scales of space 
and time. A n ideal descriptive vehicle would be one i n which one could s imulta
neously sample at a l l of these levels. Th i s would of course be an over complete 
description, referring to more degrees of freedom than the system actually pos
sesses. Nonetheless, it is feasible—and I believe ultimately necessary. I would 
like to discuss this issue i n the relatively narrow regime of thermal equi l ibr ium 
i n the grand ensemble, pr imar i ly i n the format of simple classical fluids, but not 
necessarily restricted to these. 

Although we are thus creating a picture seen at various levels of resolution, 
the elements of the picture have yet to be spelled out. Tradit ional ly , at least 
i n the past few decades, the pair distr ibution—certainly reasonable for pair -
interacting fluids—was the object of choice, leading to highly effective integral 

0097-6156/96/0629-0185$15.00/0 
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186 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

equation approximations (1). For uniform fluids, pair distributions axe functions 
only of the scalar pair separation, rendering quite feasible both analytical and 
numerical techniques, but i n the presence of arbitrary non-uniformity, this com
fortable situation does not persist: two ful l positional arguments are required. 
O n the other hand, the spatial density pattern itself now becomes significant, 
and can be probed to create a l l higher distributions (2). Thus , approximate 
thermodynamics as a functional of the density alone has become a strong com
petitor (8) to the older integral equation techniques. As we have indicated, this 
is more of a mathematical device and might rewardingly be broadened to include 
other locally defined indicators of the physical structure. Wertheim's associated 
fluid formulation (4) is a well-known example. In fact, the expanded context 
thus suggested expands the class of "solvable" systems, as well as the class of 
empir ical approximations, and I would like to examine both of these areas, i n 
an introductory fashion. 

Prototype 

Probably the simplest non-tr iv ia l context i n which the ut i l i ty of an expanded 
description becomes obvious is that of a one-dimensional lattice gas wi th near
est neighbor exclusion. Here the sites are integers {x} and the site occupations 
{px = 0,1} wi th the restriction that px-\px = 0 for each x. Non-uniformity 
is imposed by the external Bol tzmann factor zx = β^μχ where μχ = μ — ux is 
the local chemical potential due to external potential ux, The proûîe relation 
between the {nx = (px)} and the μχ is our way of encompassing the fu l l ther
modynamic information. In order to find i t , we note that the part i t ion function 
can be written as 

{Ρχ} x 

= Tr]l(zxe) 
(2.1a) 

where 

and then introduce the relative partit ion function with two adjacent occupations 
fixed, and their interaction dropped, indicated pictorial ly as 

iPP> = · · · · · ο ο · ·•··/— 
χ χ + 1 

(2.2) 
W h i l e site occupations /?, p' at χ and χ + 1 are fixed, the other occupations are 
summed over. It is clear that 

x +5 _ cx+h 
1 0 ' n * + i - * o i ( 2 3 ) 

lx — S10 > nx+l — ζ( 

1 — soo « so i ' s 
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B u t it is also clear on adopting the matr ix notation of equation 2.1b that 

(zxe)-^x+i = ξ'-iiez,)-1, (2.4) 

so that 
Det £ x +5 = Det (x~? = ... = K (2.5) 

for some system-wide constant K. 
Solving equations 2.3 and 2.5, we readily find 

/sr+i _ f I — nx — η χ +ι η χ +ι λ 
V nx [nxnx+i +K)/1 - nx - nx+i J ' 

(2.6) 

and substituting into e.g. the (10) element of equation 2.4 then tells us that 

βμχ = £n(K + nx(l - nx)) - £n(l - nx - n x + i ) - £n(l - nx - nx-i). (2.7) 

There are now two possibilities we should consider. 
a) A volume-constrained open chain, so that nx —> 0 as χ —V ± o o , but 

ηχεΡμ* 1. According to equation 2.7, then, Κ = 0, or (5) 
βμχ = ίηηχ+ίη(\ - nx) — ίη(\ — n x - nx+i) - £n(l - n x _ i — nx). (2.8) 

There is a free energy generating functional F i n the sense that 

μχ = dF[n]/dnx , (2.9) 

and here 
βΤ[η] = Y^[nxinnx - (1 - nx)£n(l - nx) 

(2.10) 
-h( l - n x _ i - nx)£n(l - nx-i - nx)] 

is local i n that it and βμχ only couple sites separated by at most the range 
of the interaction. 

b) A closed chain or r ing. Now the only thing one can say about Κ is that 
since px + px+\ < 1, then nx + n x + i < 1, so that Κ > —ηχηχ+ι implies 
that K> -\. Setting Κ = — \ + C2 where C > 0, we can then write 

μχ = θ7[η,0)/θηχ\ο (2.11) 

where 
βΨ[η, C ] = Z[(c-\+nx)in(c-l+ n^j 

+ (c + \-n)jin(c+l--n^ (2.12) 

— (1 — nx-i — nx)in(l — nx-\ — nx) . 

In other words, F remains local , but i n the system-wide environment mea
sured by the collective amplitude C—which however is not yet known. 
Matters are seen i n a different light i f we now quote a readily proved 
theorem (6), val id for a whole set of collective variables: 
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188 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

T h e o r e m . If for the set {Ca}, the profile equation μχ = dF[n,C]/dnx\c is 
valid, then apure collective contribution A[C] can be found such that on denning 

F[n,C]=T[n,C] + A[C}, 

one has 

and 

μχ = dF[n,C]/dnx\c 

0 = dF[n,C]/dC\n 

F[n) = F[n,C[n]]. (2.13) 

Equivalently, on the expanded space [n, C ] , one has the stationary principle 
at fixed { μ χ } , 

* K C ] - 5 > , n x = 0 , (2.14) 
X J 

the vanishing C-variations being sufficient in principle to determine the expres
sion C a [ n ] . For example, i n the above nearest neighbor exclusion case, it is not 
hard to show (e.g. by restricting to the uniform case) that (7) 

βΑ[0) = { c + \ ) in ( c + \ ) - ( c - i ) in (θ - \) . (2.15) 

Whether or not F [ n , C] is convex, leading to a minimum principle, is not obvi 
ous. 

N e a r e s t N e i g h b o r I n t e r a c t i o n i n O n e D i m e n s i o n 

Let us take a step upward to a continuum fluid i n one dimensional space. 
F r o m a lattice viewpoint, any interaction of range more than one lattice spacing 
creates an interaction loop, and so one might expect auxil iary fields to appear 
here as well. Simplest is an interaction φ(χΊ y) between next neighbors alone, 
physically meaningful for a sufficiently large hard core, or i f the interaction is 
due to excitation of the medium between two adjacent particles. Now we can 
order the particles, x\ < £ 2 , " · ^ XN\ introducing the external and ordered 
internal Bo l tzmann factors 

z(x) = ββμ{χ\ e(x,y) = e " ^ ( x ' y ) 6(y - x) (3.1) 

where θ is the unit step function, we find at once, i n standard Dirac quantum 
mechanical notation, that the grand partit ion function is given by 

where 
Ξ[μ] = 1 + (1\ζ(Ι-βζ)-ΐ\1) (3.2) 
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13. PERÇUS Expanded Density Functionals 189 

l ( x ) = 1 

and ζ represents the diagonal matr ix with diagonal elements z(x). 
Since the density n(x) = δ£ηΞ/δ£ηζ(χ), we then have 

n(x) = Ξ~(χ) ζ(χ)Ξ+{χ)/Ξ , (3.3) 

wi th truncated part it ion functions, row and column vectors respectively, defined 
by 
E- = (l\(I-Ze)-\E+ = (I-ez)-i\l),ov 

Ξ - - Ξ - « = <1|, Ξ + - ezE+ = \l). (3.4) 

Equivalently, applying the two-sided inverse e - 1 , for which one can show that 
( 1 |e~1 = 0 = e— 111) (but associativity is not automatic), we have Ξ ~ ( β - 1 —z) = 
0, ( e - 1 — ζ ) Ξ + = 0, so that (8) on using equation 3.3 to eliminate z(x), 

( Ξ - β - 1 ) ( χ ) - η ( χ ) Ξ / Ξ + ( χ ) = 0 

( e - 1 H + ) ( x ) - n(x) Ξ/Ξ~(χ) = 0 . 

But information has been lost i n obtaining equation 3.5, and so boundary con
ditions have to be resupplied, 

Ξ+(οο) - Ξ - ( - ο ο ) = 1, Ξ + ( - ο ο ) = Ξ - ( ο ο ) = Ξ. (3.6) 

The key observation is now that equations 3.3, 3.5, and 3.6—which ful ly 
determine Μ,ΈΓ, Ξ + , and Ξ—all arise from the free energy 

βΡ [η, Ξ~, Ξ + , Ξ] = Jη(χ) [ίηη(χ) - ΙηΈΓ{χ) - & ι Ξ + ( χ ) + ίηΞ] dx 

- 1 (inΞ~{οο)- ίηΞ_(-οο)) + \(inΞ+(οο)- InΞ+(-οο)) 

+ ^ Ξ - ( β - 1 Ξ + ) + 1 1 ( Ξ - β - 1 ) Ξ + 
(3.7) 

on a highly expanded space. That is, the relations βμ(χ) = SPF/Sn(x), 
SfiF/SE+(x) = 0 = SfiF/SE~(x) reproduce equations 3.3 and 3.5, and wi th 
a little more care, stationarity with respect to Ξ ± ( ± ο ο ) and Ξ reproduce equa
t ion 3.6. 

The awkward boundary terms i n equation 3.7 are materially simplif ied by 
the consistent replacement 

E - ( x ) = e-^<*> e - > 

H + ( x ) = e - è / M * ) e - £ / > ( < ) < " (3.8) 

_ - β f °° u(t)dt 

~, = e J-oo 
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190 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

where v(x) —> 0 as χ —> ± o o . Substituting into equation 3.7 then yields the 
completely equivalent 

fiF[n, ω,ν]= J n(x) (in n(x) - 1 + βν(χ)) dx + β J ω(χ) dx 

+ j j ' e - i ' W e - ^ ^ V ^ r i e - f ' W dx dy, 
(3.9) 

which is much more transparent: μ(χ) = SF/Sn(x) identifies v(x) as the ef
fective potential due to the interaction; the complicated last term reduces to 
Ν = fn(x)dx when evaluated, thereby canceling the J —n(x)dx i n the first 
term and identifying ω(χ) as a specific grand potential. Furthermore, the form 
i n equation 3.9 is readi ly—but not uniquely—extrapolated to higher dimension
ality. 

E m p i r i c a l expanded functionals 

The introduction of auxil iary fluids with respect to which the free energy is 
stationary is hardly novel. Perhaps simplest is the "rank 1" model (exact for 
one-dimensional hard cores) discussed some years ago (9) 

F[n, v\ = - j P ( i / ( r ) ) dr + J j n(r') U(v(r), r' - r) dr d r ' , (4.1) 

for which 

μ(Γ;η) = SF/Sn(r) = J U(v(r'),r - r') dr' 

0 = SF/Su(r) = -P'(v(r)) + j n(r')U'(v(r),r' - r) dr', 
(4.2) 

The general strategy employed with such empirical forms is to obtain Ρ and U 
f rom assumed knowledge of the uniform system properties, i n which state one 
imposes the condition ν = η. Thus , i f Uk(v) indicates the Fourier transform of 
U(v, r) w i th respect to its spatial argument, we first require 

υ0(η)=μ(η), P'(n) = nU'0{n), (4.3) 

identifying P(n) as the bulk pressure. Furthermore, differentiation of equa
t ion 4.2 readily establishes that the complete direct correlation function is given 
by 

Clr r'-n)=5MLl= f fiU'HRU-R)U'(u(R),m'- R) 
( ' ' ' in(r') J P"(v(R))- J n(R')U"(v(R),R - R') dR' 

(4.4) 
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13. PERÇUS Expanded Density Functionals 191 

so that, specializing to uniformity and Fourier transforming, 

(U'k(n)Y = (4.5) 

thereby fixing Uk(n). 
The above model is very van der Waals-like i n that C ( r , r') does not ma in 

ta in the required singular amplitude 8(r — r')/n(r) Η when the state is non
uniform. Th is particular defect is cured by positing the form, equation 4.1, only 
for the excess free energy 

βΤχ [η] = βψ[η} - j n(r) (£nn(r) - 1) dr. (4.6) 

Indeed, a number of free energy models have this structure. One of the most 
effective is the recipe initiated by Meister and K r o l l (10), i n which the mean-field 
van der Waals 

Tx[n] = j n(r) f0 (n(r)) d r - \ J j n(r) n(r') w(r ~ r') d r dr' (47) 

is extended to 

ΤΧ [η,ι/] = j n(r) f0{u(r)) d r - \ J J n(r)n(r')w(v(r), r - r') dr dr' (4.8) 

where fo and w are determined as i n the previous model. 
The commonly used weighted density ansatz can be regarded as having as 

its progenitor the one-dimensional hard core fluid mentioned above, i n the form 

F[n] = j u(x)f(u(x)) dx 

where 
r + a / 2 Q 

n(y) dy, v(x) = — av(x). (4.9) 
x-a/2 d a 

Its customary appearance is (12) 

TX[n] = j n(r)f(u(r)) dr (4.10) 

u(x) = I / 
« Jx 

where 
u(r) = Jn(r')w(y(r), r — r ; ) dr' 

j w(v,r) dr = 1. 
(4.10') 
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Although equation 4.10 is not stationary with respect to i / , it becomes so i f 
equation 4.10' is replaced by its Newton-Raphson (or other) stationary solution, 
i.e., we need only replace equation 4.10 by 

T'[n,u] = J n(r)f 

where 
w°(v) = w(v) — vw'(v) 

to guarantee equation 4.10x by the condition SF/Su(r) = 0. O f course, the 
functions / and w are again to be determined by comparison with uniform fluid 
singlet and pair densities. 

It should also be mentioned i n this context that approximation methods 
outside the domain of classical fluids w i l l often exhibit structural similarit ies to 
the above empirical forms. For example, Herring's treatment (18) of the free 
Fermion kinetic energy density functional T[n] i n one-dimensional space can be 
written i n a s imilar form. Here one takes the Weiszacker energy 

Γ » Η = I J(n'(x))2 dx/n(x) (4.12) 

as the low density "ideal gas" contribution, and writes 

- Tw[n] 

' dx'/n(x') dx (4.13) 

(4.14) 

as an expression that reduces to the Thomas-Fermi density functional TTF = 
( π 2 / 6 ) / n(x)3 dx for slowly varying density. In the form, equations 4.13 and 
4.14, extension to three dimensions is immediate—although not unique—and of 
course the Newton-Raphson ploy again allows the construction of T e x [ n , v\ i f 
\jv(x) i n equation 4.13 is replaced by 

- » l / i / ( x ) 

(4.15) 

J n(rf)w° (v(r), r — r') dr' 

1 — J n(rf) w'(i/(r), r — rf) dr' 
dr (4.11) 

Tex[n] = T[n] 
•A 

where 

n(x') dx' = 1 £ 
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13. PERÇUS Expanded Density Functionals 193 

Separation of scales 

Aside from being a bit ad hoc, the empirical forms noted typical ly have the 
property that F [ n , v] is stationary with respect to υ, not a m i n i m u m 3 , suggesting 
an unpleasant saddle point character. Th i s need not be the case. A major 
purpose of the auxil iary field expansion of density space is to allow for the 
creation of microscopic or macroscopic variables which when fixed leave only 
local fluctuations of the type that fluid state theory is accustomed to handle. 
W h e n this motivation is given concrete form, the free energy remains convex, 
at least before any further approximations. Let us first examine the abstract 
situation. For internal energy h[p], a functional of the microscopic configuration 
density p(r) = Σ S(r — r ; ) , and local chemical potential μ(τ), we write the 
grand part it ion function i n brief symbolic form as 

H|,] = J. -βΚρ) ρβρμ ββρμΌρ. (5.1) 

Suppose then that constraining a set anchors relevant large scale fluctua
tions, leaving a system only locally correlated, and enforce the constraints to an 
adjustable extent to values {v} by introducing the weight functional — υ], 
normalized so that J W[v]Dv = 1. We can then rewrite 

Ξ [μ] = jj β~βμΜ β
β ρ μ W[v[p] - v] Dp Dv (5.2) 

Dv 

where 

Ξ [μ\ν] = j W[v(p) - ν] ε β ρ μ β'βμ^ Dp. (5.3) 

Ξ [μ I ν] is the constrained part it ion function that we assume has large scale 
fluctuations quenched, and #[μ|υ] = — ̂ ηΞ[μ|υ] the corresponding effective 
energy i n υ-space. The approximate evaluation of .if [μ|υ] is then a standard 
w a y — a l a Landau-Li fshi tz—of treating systems whose description calls for more 
than one space-time scale. However, we w i l l go one step further. Introduce { £ } 
conjugate to { υ } , and generalize equation 5.2 to 

Ξ\μ,ζ\ = j Έ.\μ\ν]β-Κυ Dv, (5.4) 

to be evaluated at ζ = 0. If indeed ν plays the role of order parameter, we 
can anticipate that the integral w i l l be restricted to a small region of v-space, 
depending of course on ζ. Since Ξ [μ, ζ] is the Laplace transform (2-sided) of a 
positive kernel, 

η[μ,ζ] = ~ίηΞ[μ,ζ) (5.5) 
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w i l l be concave i n the pair of fields. Defining 

η = - ί ί ΐ / ί μ , ν = δΩ,/δζ, (5.6) 

we can hence Legendre transform to a convex free energy 

F [ n , u]=n- μ[η, v\ - ν · ζ[η, ν] + Ω [μ[η, ι/], ζ[η, ι/]] (5.7) 

and this i n fact w i l l have the ζ = 0 specialization given by the now famil iar 

μ = OF/δη, 0 = J F / i i J . (5.8) 

It is important to observe that the final expression equation 5.4 can be written 
as 

(5-9) Ξ [ μ , 0 = Jε-βΗΙρ] ^ ' " e - ^ " ! ' ) Dp, 

independent of the specific form of W, which has been replaced by a Legendre 
transform for the purpose of fixing the 

For example, i n the Ramakrishnan-Yussouff theory (14) of crystall ization, 
signaled by the macroscopic appearance of a set of wave vectors Κ = {&}, 
the order parameters are (l/N) £ ^ exkri where Ν estimates the mean particle 
number, and one starts with 

W jf Σ e " ' r ' - "*1 = e x p f Σ λ * ^ Σ c < * " r i - (5.10) 

suitably normalized. Integration over ν i n equation 5.4 results i n insertion of the 
factor 

βχρ(—β/Ν ^ Cketk'rj ) into equation 5.2, precisely as in the usual analysis. 

D e n s i t y - p o t e n t i a l h y b r i d 
The simultaneous advantage and disadvantage of the formulation, equations 
5.9, 5.7, is that it makes use of explicit expressions for the order parameters 
which one believes are excited under the circumstances of interest. If they were 
determined only implicit ly, as i n the Gervais-Sakita prescription (15) for the 
instantaneous interface z = η(χ, y) of a nominally planar two-phase separation: 

Jn'j (z1 - V(x,y)) w(x - x', y - y')(p(r') - m(0j) dr' = 0, (6.1) 

where n j is a reference interfacial profile and w a smoothing function, matters 
wold be much more complicated. It would clearly be more satisfactory i f the 
separation of scales entered as an inescapable aspect of the structure. 
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One way of invoking this behavior is by means of the Kac-Siegert (16) 
or Hubbard-Stratonovich procedure applied to interactions composed of short 
range "reference" φο and long-range attraction —φ. The former are responsible 
for local particle-like fluctuations, while the latter play a direct role i n the wave
like collective motions associated for example with interfaces. The separation is 
made quite l iterally: 

Ξ [μ] = j e-ph° Μ ββμρ e^p(pp Dp, (6.2) 

where interaction self-energy has been included for convenience, and then rep
resented as a functional Laplace transform 

Ξ[μ] = j e - * M p ] ββμρ β - β ρ ν
 β-τβν·φ~1ν DpDv. (6.3) 

For present purposes, we then generalize to 

Ξ [μ, C] = j e - ^ o M ββμ'ρβ-β{ζ+p)v β-τβν'φ~1ν Dp Dv, (6.4) 

ίΙ\μ,ζ) = ~ίηΞ\μ,ζ], 

to be evaluated at ζ = 0. 
Let us now introduce the conjugate η = (p) = —δΩ/δμ, ν = (ν) = δΩ/δζ, 

and the corresponding convex F = Ω + η · μ — ν - ζ. If we wanted to model 
F [η, v\ by an empirical form, we would fit functional parameters, as i n Sec. 4, 
by insisting upon reproducing uniform system correlations. The expanded space 
correlations are readily found i f we observe on making the transformation ν —ϊ 
ν — φ i n equation 6.4 that Ξ [μ, ζ] = ^β^'φ(* Ξ [μ + φζ], or 

Ω\μ,ζ]=α\μ + φζ]-±ζ·φζ. (6.5) 

Hence, continuing our obvious condensed notation, 

η[μ, C] = -δΩ/δμ = η[μ + φ ζ] 
ν\μ, C] = δΩ/δζ = -φ η[μ + φ ζ] + C, 

Identifying ν as the effective potential due to η+ζ", while the compound structure 
factor matr ix is given by 

Snn [μ, C] = δη [μ, ζ]/δβμ = S [μ + φζ] 

Snv [μ, ζ) = -δη [μ, ζ]/δβζ = -S [μ + φζ] ψ (6.7) 
Svv [μ, ζ) = -Su [μ, ζ]/δβζ = <pS [μ + φζ) φ + ψ/β. 
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Consequently, we have for the direct correlation matr ix , 

C [ n , , ] = ^ , C ] - = ( S - ^ + ^ + ^ (6.8) 

B u t _ _ 
/ 62fiF[n, η]/6ηδη -S2fiF[n, u]/SnSu \ 

C[n,v}=[ _ _ (6.9) 
~ \-S2fiF[n,is]/SvSn S2fiF[n,u]/SuSu J 

and (6.6) implies 

—5F[n, i/]/Su = ζ[η, u] = —φ 1u — n 

SF[n, v]/8n = μ[η, v\ = μ[η] + ν + φη. 
(6.10) 

F r o m either (6.9) or (6.10), we find the unsurprising 

F[n, u] = F[n] + ]^n - φη + ν · η + · φ~λν : (6.11) 

min imiz ing over the effective potential ν s imply says that ν = —φη and F[n, u] = 
F[n\. However, equation 6.11 is itself a special case of the empirical model 

F[n, u] = F0[n] + ν · η + ί\[ι/], (6.12) 

representing two interacting fluids. A n d according to our standard model pro
cedure, we only have to make sure that equation 6.8 is satisfied at uniformity: 

11 =ϋ[η)+βφ 
όηόη / 6 1 3 x 

δνδν βψ' 

for uniform η and iJ. The possibilities inherent i n equations 6.12 and 6.13 remain 
to be investigated. 
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Chapter 14 

Geometrically Based Density-Functional 
Theory for Confined Fluids of Asymmetric 

("Complex") Molecules 

Yaakov Rosenfeld 

Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva 84190, Israel 

By capturing the correct geometrical features, the fundamental
-measure free energy density functional leads to accurate description 
of the structure of the general inhomogeneous simple ("atomic") fluid. 
The initial hard-sphere functional utilizes weighted-densities, which 
are system-averages of the true density profiles weighted by the in
dividual particles' geometries. It then yields explicit expressions for 
the "universal bridge functional" which is applicable for arbitrary 
pair interactions. The key for the derivation of the hard-sphere func
tional is the convolution decomposition of the excluded volume for 
a pair of spheres in terms of characteristic functions for the geom
etry of the two individual spheres. The recently found relation of 
that decomposition with the Gauss-Bonnet theorem for the geome
try of convex bodies enabled to extend the hard-sphere functional to 
hard-body liquid crystals. Like the hard-sphere functional for simple 
fluids, the fundamental-measure functional for hard-bodies is an ini 
tial step towards a comprehensive free energy density functional for 
complex fluids of asymmetric molecules, which keeps the geometric 
features to the forefront. 

Density functional methods have received increasing attention in recent years, 
and achieved a fair amount of success and sophistication in applications to i n -
homogeneous classical fluids (1). They played a key role in providing the now 
emerging comprehensive picture of the complex thermodynamic behavior of fluids 
in confined geometries (2-4)- A s a quite general approach to the equil ibrium prop
erties of non uniform fluids (5-7), the density functional method has proven (1-7) 
to be one of the more successful and widely applicable approaches to a variety 
of interfacial phenomena like adsorption, wetting, and freezing. The idea is to 
express the free energy as a functional of the average one-body densities {/0t(~r*)}, 
of the various species {%} of particles, from which al l the relevant thermodynamic 
functions can be calculated. This enables to investigate confined fluids wi th al l 
sorts of inhomogeneities. The central quantity in the density functional theory for 
nonuniform fluids is the excess free energy ( over the " ideal - gas" contributions ) 

0097-6156/96/0629-0198$15.00/0 
© 1996 American Chemical Society 
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14. ROSENFELD Geometrically Based DFT for Confined Fluids 199 

j Fex[{pi· This (generally unknown!) quantity originates i n interpar-
ticle interactions, and many equil l ibrium properties of the fluid (e.g. tensions at 
interfaces, solvation forces for confined fluids, phase transitions for different i n -
homogeneities) can be derived from it . In contrast to the many developments in 
density functional theory of simple (" atomic" ) fluids il), the corresponding theory 
for molecular fluids is at a more rudimentary stage (8-11), as expected in view of 
the increase in complexity (12). 

The more sophisticated versions of the density functional theory, namely those 
based on non-local excess free energy functionals, employ (coarse grained) weighted 
densities (obtained by weighted average of the true density profiles) which are con
structed to fit available structural and thermodynamic properties of the homoge
neous (bulk) fluid (1), (13-19). Some of these require to solve complicated non 
linear equations which relate the weight functions to the bulk direct correlation 
functions. B y construction, these theories encounter escalating computational (if 
not conceptual) difficulties upon moving from one component systems to mixtures, 
and to non-spherical molecules. Indeed, ingenious ad-hoc modifications (20-22) 
were required of even the simplest hard-sphere functionals in order to make them 
applicable for hard-body l iquid crystals wi th , never the less, l ittle predictive power. 

This review describes the fundamental-(geometric)-measure functional which 
is being developed in recent years (23-30). This geometrically-based approach to 
inhomogeneous fluids is formulated apriori for mixtures of non-spherical molecules, 
and derives the uniform fluid properties as a special case, rather than employ them 
as input. It is comprehensive, yet its application requires the minimal computa
tional complexity. 

Basic idea: Interpolation using natural "basis functions" 

The idea for this k ind of theory came from earlier work on integral equation the
ories for l iquid structure. Analysis (40-42) of a l l major present day approximate 
theories of the structure and thermodynamics of simple liquids (43-45),(46-47) 
revealed that, in effect, they interpolate between the standard " ideal gas", low 
density, and a high density ,"ideal l i qu id " , l imits (48-53). The role of the " ideal 
l iqu id" is played by the asymptotic high-density l imit of the hypernetted-chain 
integral equation (denoted the Onsager l imit) which has been later proposed as 
a reference ideal state (replacing the ideal-gas reference state) for developing a 
systematic theory of the l iquid structure. This Onsager " ideal l iqu id" l imit for al l 
systems wi th repulsive interactions, maps universally (50) onto the corresponding 
l imit for hard-spheres, for which it is obtained from the solution of the Percus-
Yevick integral equation (54-56). The Onsager l imit corresponds to an exact 
lower bound for the potential energy of the system, and is characterized by single 
particle geometries (51-53). For charged hard particles it can be achieved by i m 
mersing the entire system in an infinite conductor, which isolates the individual 
particles. The expansion around this state is fastly convergent at l iquid densities, 
involving mathematical constructs (i.e. l iquid-like basis functions) that enable 
analytic connection to functions described by low order diagrams (48-53). These 
results suggest that an explicit description in terms of " n a t u r a l " basis functions 
should be the starting point for developing the excess free energy functional of the 
inhomogeneous fluid. 

Following this approach, a new kind of general functional was derived wi th 
a unique result for the inhomogeneous hard sphere fluid mixture (23-29), which 
keeps the geometric features to the forefront. The basic idea is to interpolate 
between the " ideal l i q u i d " , high density, l imit where the pair direct correlation 
function is dominated by convolutions of single particle geometries, i.e. overlap 
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200 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

volume and overlap surface area, and the l imit of low density where it is given 
by the pair exclusion volume (53). The key for the realization of this idea is the 
convolution decomposition of the excluded volume for a pair of convex hard-bodies 
in terms of characteristic functions for the geometry of the two individual bodies. 
O n the basis of a unique convolution decomposition for spheres it was possible 
to derive (23) the fundamental-measure free energy functional for hard-sphere 
mixtures, i n which the weight functions represent the geometry of the individual 
particles. The fundamental-measure bridge functional, which is derived from this 
free-energy functional, can then be utilized for arbitrary pair interactions (27). 
After many tests of the theory (23-29), (31-39) it is fair to say that by capturing 
the correct geometrical features, the fundamental-measure free energy density 
functional leads to a highly accurate description of the structure of the general 
inhomogeneous simple ("atomic") fluid. 

The relation of the convolution decomposition for spheres wi th the Gauss-
Bonnet theorem for general convex bodies, was found very recently (30). It enables 
to extend the fundamental-measure functional to ("complex") fluids of asymmet
ric hard-bodies, from which we can begin to develop a geometrically-based free 
energy functional for molecular fluids. The extension to molecular fluids thus fol
lows naturally as the next step in a continuing systematic development (described 
below in more detail) within fundamental l iquid theory, aiming to provide physical 
insights, simplicity, and predictive power which are not always provided (8) by 
other approaches. 

Fundamental-measure free-energy functional for hard-particles: 
Unique result for hard-spheres 

Consider a general fluid of hard convex bodies with one-particle densities {pi(~r*)}> 
For notational simplicity adopt the descrete representation for polydispersity where 
an object i is considered distinct from j i f they differ in any of their 
physically relevant characteristics, like size, shape or orientation in space. Let 
Ri(9,ip) be the radius-vector from the "center" of particle i to its surface, 

jRt =| Ri(0,(p) I (= constant for spheres), and let r\ denote the radius-vector 
to the "center". The interaction potential φ^(τζ) between two hard bodies i 
and j is infinite if they overlap and zero otherwise, and the Mayer f-function 
fij(rij) = exp(—Φ^(^)/^ΒΤ) characterizes the pair excluded volume , 

fij(^)= 0 for if)j = 0 

fiAr?j)= " I for inj Ϊ 0 

Here r^ = ~rj — ~r\ , i Π j is the intersection of the bodies, and 0 denotes the 
empty set. For spheres, f%j(r%) = — θ(| r\j \ — (Ri + Rj)) , where θ(χ) is the unit 
step function, θ(χ > 0) = 0, θ(χ < 0) = 1. 

In order to interpolate (53) between the low density (near ideal gas) l imit 
described by the pair excluded volume (2-particle diagram) , {β^) Q ~> 

\ Eij *i •j = \ T,ijdl*d7pi(l?)pj(7)fij(-Y - 7) , and the ideal 
liquid asymptotic limit (40-42), (51-52) characterized by 1- particle geometries, we 
postulated (23) the following general excess (over ideal gas) free energy functional 
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14. ROSENFELD Geometrically Based DFT for Confined Fluids 201 

F~[{pj(?)}] 
kBT 

= J άΊΪΦ{{ηα(Ί?)}} (2) 

where it is assumed that the excess free energy density Φ is a function of only the 
system averaged fundamental geometric measures of the particles, 

N°(^) = Σ / Λ ( ^ Κ ( Β ) ( 7 - I?)d7 (3) 

The weighted densities naÇ~x) are dimensional quantities with dimensions [na] = 
(vo lume) ( a - 3 ) / 3 where 0 < a < 3 , and provide a functional basis set for expanding 
the function Φ which has dimension (volume)" 1 . The weight functions w\a^ are 
characteristic functions for the geometry of the particles, and are determined (23) 
by expanding the Mayer 2-particle function in terms of characteristic functions 
for the individual particles. 

A unique solution was found for the special case of spheres w i th a convolution 
decomposition involving a minimal number of different weight functions (23),(27): 

-ΜΗ) = ™i 0 ) ® ™ f + ^ 0 ) ® ^ + ^ ® + ^ ® 
-+(V1) _>(V2) __>(V1) __>(V2) W 

— <S> w j — w j ® w { 

where the convolution product 

u/< e ) ® = J wf\l? - Tt) · t i ; j 7 ) ( " ? - r j K ? (5) 

also implies the scalar product between vectors. This minimal weight-function 
space contains only three functions , two scalar functions representing the charac
teristic functions for the volume and the surface of a particle and a surface vector 
function, 

u4
w(r) = 0(r - Ri) ; wFÇT) =| Vw?\r) |= 6(r - R,) 

V 5 v 2 ) ( r ) = Vwf >(r) = ^6{r - Ri) 

The other weight functions appearing i n equation 4 are proportional to these three, 
and are given by 

^ ( r ) = ^ r ; w « - ( r ) = ^ T ; w < ( r ) = ^ r f i — ( 7 ) 

There are only 5 positive-power combinations of the weighted densities which are 
scalars of dimension (vo lume) - 1 . For the isotropic uniform fluid these weighted 
densities should correspond to the fundamental-measure scaled particle variables 
(53), and the excess chemical potential should feature the scaled-particle analytic 
interpolation between the exact l imits of small and large particle size . This cor
responds to the "scaled particle" differential equation (23), (53), jj^ = Σ α η α ^ 
, for the free energy density in terms of the weighted densities. This equation yields 
the forms of the five dimensionless (n 3-dependent) coefficients, and the integration 
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202 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

constants are determined from known low density properties for the uniform fluid. 
The following excess free energy density is thus derived (23),(27): 

Φ = - n 0 l n ( l - n 3 ) + + n A ίΛ ^ - — 4- - τ - τ : 
1 - n 3 24π(1 - n 3 ) 2 I 1 - n3 8π(1 - n 3 ) 2 J 

(8) 

The application of this procedure for one dimensional "spheres" leads to the 
exact result for hard rods as obtained earlier by Perçus (13). In two dimensions 
it leads to accurate analytic structure factors for hard disks (26). This new free 
energy model, based on the fundamental geometric measures of the particles, pro
vides the first unified derivation of the scaled-particle and Percus-Yevick theories 
for hard spheres, as a special case. The scaled-particle (57-58) and Percus-Yevick 
(54-56) theories provide the most comprehensive available analytic description 
of the bulk hard sphere thermodynamics and structure, and serve as the stan
dard input for other weighted density models. This new model yields analytic 
expressions for pair and higher order direct correlation functions of a uniform 
(homogeneous) fluid, in good agreement with al l available simulation results for 
the thermodynamics, structure, and adsorption of hard sphere mixtures. Starting 
from the original fundamental-measure functional (23), a "simplif ied" representa
tion (without the vector-type weights) was derived (31), (34) for the hard-spheres. 
It was then proved (37) to be equivalent to the original functional. This " s i m 
plified", fully scalar representation provides a useful computational aide for the 
special case of hard-spheres, which comes, however, at the cost of abandoning the 
geometric meaning of some of the weight functions; it works for spheres but it 
does not seem to be extendable to general hard-body fluids. 

Fundamental-measure universal bridge-functional: 
Optimized free energy functional for general simple ( "atomic") fluids 

The starting point for the application of the density functional method for both 
uniform and non-uniform fluids are the density-profile equations (1-2), (5). The 
density profiles { p m ( ^ ) } for the fluid subject to external potentials { ^ m ( ^ ) } 
which couple to the particles of type {m ; m = 1,2, . . . , M } are obtained by 
solving the Euler-Lagrange equations 

Spi( r ) 

which correspond to the minimization of the grand potential Q[ {p m ( r )}] = 
Fid[{pmÇr*)}] + ^ex[{Pm("r*)}] + T*Jdl*Pi(l*)[ui(~r) - μ* ] , where μί are the 
chemical potentials. The ideal-gas free energy is given by the exact relation 
FvliPmC?)}} = fcBTD/rf"F>Pi(^){ln[pi(r)À?] - 1} , where λ, = ( ^ f ) 1 / 2 

are the de Broglie wave-lengths. A hierarchy of direct correlation functions c^n,FD^ 
is given by functional derivatives (FD) of the excess free energy functional. For a 
fluid in contact wi th a reservoir bulk fluid, of average densities {pm,o} , the density 
profile equations 9 can be written in the following form (27-28) 
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i n a ( r ) = - u - i p - ^[{p m ,o} ; {Pm{r)h Ά ( 1 0 ) 

+ EjPJ,ofd7c?/D)[{pm,0}; (I ^ - 7 |)]fo(7) - 1) 

where gi(~Y) = , and c^ ' F D ) [ {p m , 0 } ; (| "r* - 7 |)] are the bulk direct 
correlation functions as obtained from the second functional derivatives of the 

excess free energy functional, kBTc^FD\~r* \, "r^) = — * F * * K M RJ}\ ? j n the 
spa r !)*Pi( r 2) 

uniform fluid l imit . The bridge functional Bi[{pm$}', {pm(~r*)}', ~~?] is related to 
the sum of all terms beyond second order in the corresponding functional Taylor 
expansion of the excess free energy. 

The fundamental measure functional provides explicit simple expressions for 
the bridge functional, involving only integrations of known functions. This enables 
to apply the hard-sphere functional for fluids with arbitrary interactions, going 
beyond the (standard) van der Waals approximation (59-61) for the attractive 
interactions. A new free energy density functional (27-28) for general inhomo
geneous simple ("atomic") fluid mixtures is based on that for the hard spheres, 
and is operationally equivalent to an ansatz of universality of the bridge func
tional: The bridge functional, namely the sum of al l terms beyond second order 
in the functional Taylor expansion, is approximated by that for the hard-spheres. 
The second-order functional can be optimized by imposing the test-particle self-
consistency, namely by considering the density profile equations (i.e. the Euler -
Lagrange equations for minimizing the Grand Potential) , w i th the same universal 
functional, but in the special case when the external potential is generated by a 
test-particle at the origin of coordinates. These equations are solved coupled wi th 
the Ornstein -Zernike relations, to generate the bulk pair correlation functions, 
which are the required input for the second-order functional. The choice of the 
hard-sphere diameters (for fluids with arbitrarily soft potentials) is such that an 
error term in the free energy is minimized. There is no attempt to impose any spe
cific structural-thermodynamic consistency relations, everything is predetermined 
by the quality of the approximation for the in i t ia l free energy functional for the 
inhomogeneous hard sphere fluid mixture, from which the "universal" bridge func
tional is obtained. The application of this new general method for non-uniform 
fluids to the special case of the bulk fluid, corresponds to the well established, suc
cessful thermodynamically-consistent modified-hypernetted-chain theory (43-45) 
( but with the bridge functions now generated by an explicit, "universal " , hard-
sphere bridge functional). Indeed, using this new method accurate results are 
obtained for the bulk pair correlation functions for a large variety of potentials, 
for both one component systems and mixtures (27), (38-39). The systems con
sidered include (38) non-additive hard sphere mixtures, Lennard-Jones mixtures, 
and strongly coupled binary plasma mixtures. 

Unless the in i t ia l hard-sphere functional is already the exact one, the opt i 
mized hard-sphere functional is more accurate than the in i t ia l one. In particular, 
the fundamental-measure in i t ia l hard-sphere functional predicts the Perçus-Yevick 
closure result that hard-sphere fluid binary mixtures never phase separate, but 
when optimized it does predict phase separation for large size ratios (28). The 
hard-sphere "universal" bridge-functional, and the corresponding optimized free 
energy functional have been tested (directly and also implicit ly) very success
fully, for a variety of hard and soft pair interactions and external potentials, by 
comparison with computer simulations of density profiles for a large variety of sit
uations where size or packing effects play an important role (23-29), (31-39) and 
by comparison with experiments on colloids and emulsions (62) which address the 
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204 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

challenging question of phase separation in asymmetric binary hard-sphere mix 
tures (28). The cases considered include among others: (1) wetting transitions 
and capillary condensation of argon atoms in carbon slit-like pores, (2) adsorption 
of binary methane-argon mixtures on a graphite surface, (3) argon-krypton mix 
tures in carbon slit-like pores, (4) selective adsorption from binary mixtures, and 
(5) strong electrolytes near a charged electrode. One of the most striking tests for 
soft potentials is provided by the plasma (point charges!) near a wall . It appears 
from all these investigations that, by capturing the correct geometrical features, 
the fundamental-measure hard-sphere functional leads to accurate description of 
the structure of the inhomogeneous simple fluid. 

Extensive calculations have revealed (39) that while the structural results of 
this theory are highly accurate, its results for the phase boundaries (e.g. for the 
wetting transition) of Lennard-Jones type potentials are less accurate than those 
obtained from the simple van-der-Waals mean field theory (that employs the same 
accurate hard-sphere functional). The technical reason for this is the following 
(39): relying on expansion from reference bulk density, the functional of the test-
particle consistent theory does not satisfy the Gibbs adsorption equation relating 
between the excess adsorption and the derivative of the excess grand free energy 
with respect to the chemical potential, while the simple mean-field theory does. 
A remedy can be provided by improving the "reference" state, e.g. by providing 
the test-particle consistent functional for the repulsive part of the Lennard-Jones 
type potential, and by adding the attractive part in the simple mean form. Recall 
that the test-particle consistent theory does not impose any particular thermo
dynamic consistency relation, and a slight inconsistency (which is inevitable for 
an approximation) is apparently augmented when it comes to locating the phase 
boundaries for inhomogeneous fluids. It should be noted, however, that the state
ment of universality of the bridge functional, wi th the approximate functional 
given by the fundamental-measure theory, is the overall most accurate available 
general approximation for the structure of a l l types of fluids, and thus remains 
viable. 

Free-energy functional for molecular fluids : 
Application of the Gauss-Bonnet theorem for convex bodies 

Consider a body i , denote its surface by di , and let n* be the outward unit 
normal to that surface (63). From the principal curvatures κ$ , of the sur
face of the body i , obtain the mean, Hi = | (/c£) 4- /c^) , and the Gaussian 

, Ki — κ$κ,Ρ , curvatures. For spheres the curvatures κ$ = = Hi = , 
Ki = are constant on the surface. Let 5 be a simply connected portion of 
a surface whose boundary is the closed curve C w i th arc length s. Let KG be 
the geodesic curvature of C at a given point on the surface and let Κ be the 
Gaussian curvature of 5 , then (63-64) (Gauss-Bonnet theorem) 

where dA is the element of area, and ds the element of arc. The integral Gaussian 
curvature for any convex body i is equal to 4π , G(i) = S Sdi KidAi = 4π . The 
intersection of two convex bodies is a single convex body, so that fij( — rj) = 
—G(iC\j)/4n . The intersection diC\ j is the surface of i which is inside j , and 

(11) 
C 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 9

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 5
, 1

99
6 

| d
oi

: 1
0.

10
21

/b
k-

19
96

-0
62

9.
ch

01
4

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



14. ROSENFELD Geometrically Based DFT for Confined Fluids 205 

the intersection di Π dj are closed curves which are shared by the surfaces of i 
and of j . In the simple case when the intersection of i and j produces only one 
intersection curve connecting the two pieces of i Π j , we apply the Gauss-Bonnet 
theorem (equation 11) to each piece separately, we then combine the results to 
get 

G(i nj)=4n= J J K4Ai + J J KjdAj + J (*<*> + *$°) ds (12) 

The convolution decomposition for spheres (equation 4) turns out (SO) to be 
just a special case of the Gauss-Bonnet theorem (equation 12) for convex bodies, 
which can be written as 

1 - η» · η-· 
- 4 * / « ( r ? - » 7 ) = G ( t n j ) = G(inj)CA + [ ^'J^ + Ai) da (13) 

Here 

G(inj)CA= [ [ K4A + f f KM 
J Jdinj J Jdjni 

J *|η«χη 7-| J J'|n< χ η-·| J Ίή\χη 7 ·| J ^Ιη^χη,-Ι 
dindj 1 J l dindj 1 J } dindj 1 n dindj 1 J l 

(14) 

denotes the convolution approximation ( C A ) . For spheres, equation 14 corre
sponds, term by term, with equation 4 multiplied by 4π. If κ$ is the normal 
curvature of the surface at a point on the curve di Π dj in the direction of its 
tangent, and is that in direction at right angle to i t , then the curvature 
asymmetry is given by, Ai = — κ^) . The curvature asymmetry term in 
equation 13 cannot be expressed as a convolution. The normal curvature of a 
sphere is the same in al l directions so that the curvature asymmetry vanishes, and 
the convolution approximation, 

G ( t n j ) = G(inj)CA (15) 

, becomes exact. The curvature asymmetry term becomes more significant wi th 
increasing deviations from sphericity. 

As first step we adopt (SO) the convolution approximation equation 15 for 
general hard bodies. It is equivalent to the convolution decomposition equation 
4 provided that the following set of six distinct weight functions for the general 
hard body i is employed: 

„(3> 
(Γ*) = Θ( 7 - Ri(e,<p) ) ; wV(?) =| V ^ 3 ) ( r ) h δ(? - Ε^θ,φ)) 

^2\-Y) = V u 4 3 ) ( r ) = n V > ( r - %(θ,φ)) 
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(0)/—>\ ^* (2)/—>\ (1)/—»\ Hi (2)/—>\ — — Κ Hi^(V2) . 

* (r> = 4^Wi \ r ) Ί wi \ r ) = -^wi ){r);wi (r) = —wi ( r ) 
(16) 

For spheres this set reduces to the set given by equations 6-7. For non-convex 
bodies we should (see equations 4.7,4.8 in (53)) replace these w^Çr*) and 

™; (~?) b y § " Λ< (*,¥>)) a n d f " Λ < » respectively, 
_>(cs) 

where R{ (θ, φ) is the radius vector to the surface of the convex envelope (CE) 
of the particle i. The mean and Gaussian curvatures, Hi , K{ , are not constant on 
the surface of the general hard body, and six different weighted densities have to 
be calculated separately (compared wi th the three for spheres). Equations 2,3,8, 
and 16 thus denne the fundamental measure ( F M ) excess free energy functional 
for the general hard-body fluid, $ψΜ , which is an init ia l geometrically-based free 
energy functional for hard-body fluids. 

Expectations and preliminary results 

General. The optimized free energy, based on the universality of the bridge 
functional, is applicable to molecular fluids. It requires only an ini t ia l accurate 
free energy functional for hard-body fluids, from which the bridge functional for 
non-spherical hard particles wi l l be derived. The hard-body functionals, start
ing with the one derived above using the hard-sphere paradigm, are expected to 
provide in i t ia l accurate functionals for general molecular ("complex") fluids. It 
is expected that the relative insensitivity of the bridge functional to the density 
profiles, as exhibited for atomic fluids, wi l l hold also for molecular fluids. In 
particular, it should not be very sensistive to the distribution of orientations, so 
that bridge functionals derived from free energy functionals for isotropic or ne-
matic hard body fluids, may have wider validity in the context of the optimized 
theory. In parallel with hard-body fluids we may consider also charged (with 
Coulomb or Yukawa charges) hard-body fluids which provide a starting point for 
the statistical thermodynamic analysis of a large variety of interesting physical 
systems (65-68), (52) including ,e.g. , water, electrolytes, molten salts, l iquid met
als, dense plasmas, colloidal dispersions, microemulsions, and micelles. W i t h i n the 
optimized theory, the charge contributions to the direct correlation functions, in 
particular for the Onsager l imit (27),(51-52), can also be discussed (27) in terms 
of the fundamental-measures. Recall that the strong coupling l imit of the direct 
correlation functions of charged fluids is given by the electrostatic interaction be
tween the charges when they are smeared on the surface or in the volume of the 
particles, i.e. a convolution form that involves the geometric weighted densities. 
It should be emphasized that the geometric approach keeps the comuputational 
complexity at its lowest possible level, namely at the level of the description of the 
pair interactions and the geometry of the container. There are various methods 
(69) for solving the density profile equations. When the geometry of the bodies 
is specified by a l imited number of mesh-points on its surface, it seems that the 
finite-element method might be particularly useful. 

Isotropic hard-body fluid. W h e n applied to the homogeneous (bulk) hard-
body fluid $ψΜ is independent of the distribution of orientations and is equal 
to the form obtained from scaled particle theory (53). This indicates that 
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although derived for arbitrary inhomogeneous hard-body fluids, fj?M is bet
ter suited for isotropic fluids. Remarkeably, eventhough the convolution ap
proximation equation 15 is generally approximate, }ψΜ yields the exact sec
ond vir ial coefficient, B^, for the homogeneous isotropic hard convex body bulk 
fluid. Indeed, using equation 16 integrate equation 4 to obtain the exact result 
(70),(53) Bij = \[v(i) +S(i)R{j) +R{i)S(j) + V(j)] where V(i), S(i) , and 
R(i) = ^ fdi HidAi are, respectively, the volume, surface area, and mean-radius 
of the body i. The functional fj?M predicts a th i rd v ir ia l coefficient for the one-
component isotropic hard spherocylinder bulk fluid which is only 10% smaller than 
the exact coefficient, even for a large length over width ratio, L/D = 6. As can 
be gleaned from related work (53), (71), (9), fP^ yields an accurate equation of 
state for isotropic bulk fluids. Using the second functional derivatives of $ψΜ the 
direct correlation functions are expressed in terms of convolutions of the weight 
functions, and for the special case of spheres they are identical (23), (53) to the ex
act solution of the Perçus-Yevick equation. Thus, when truncated at second order, 
fP*M reduces to a version of a functional which was recently employed successfuly 
(11) for the inhomogeneous fluid of hard linear molecules (spherocylinders, el l ip
soids). As can be gleaned from these results and related work (53), (71), (72), (9), 
as long as the aspect ratio of the molecules (e.g. length/width) is not too large 
(e.g. smaller than about five), fj?M for isotropic hard-particle fluids wi l l be of 
accuracy comparable to that it demonstrated for the spheres. The accuracy of 
IFM c a n D e estimated apriori by the extent to which the convolution approxi
mation holds. Note that the convolution approximation is approximate also for 
spheres in even dimensions (e.g. D=2) (24-26), yet the fundamental measure 
functional for hard-disks proved accurate (26). Ex is t ing programs for solving the 
the hypernetted-chain equations using expansions in appropriate angle-dependent 
basis set (73) require only a subroutine which evaluates the bridge functional. 

Aligned hard-body fluid. The system of parallel hard ellipsoids ( P H E ' s ) is 
related to the hard-spheres by an anisotropic mapping (74-75). B y applying that 
mapping on the weight functions 6-7, we obtain the PHE-weight-functions. B y 
applying that mapping further on equation 4 we find that the convolution de
composition holds exactly also for P H E ' s . The PHE-weight-functions thus define 
the fundamental measure ( F M ) excess free energy functional for the P H E ' s fluid, 
denoted fpMyPHE · ^ yields the exact analytic solution of the Perçus-Yevick equa
tions for the D C F ' s of the P H E fluid, and thus predicts correctly the absence of 
a smectic phase for the P H E fluid. The P H E ' s provide a very useful reference 
system for fluids of aligned particles (8), (11), (20-21) , and fpM PHE provides 
a paradigm as well as the starting point for the fundamental-measure functional 
for fully aligned particles (by, e.g. perturbation theory for nematic and smectic 
phases).The insensitivity of the bridge functions to the shape of the molecules 
enables to utilize the (easier to calculate) P H E weight functions (parametized) 
in the bridge functional expression for other shapes of molecules. General theo
retical techniques for liquides of orientationally ordered particles were developed 
(76) which are particularly useful for solving the (hypernetted-chain type) inte
gral equations for the density profiles, which arise from the present theory. The 
existing programs (76) need only be supplemented with a routine that evaluates 
the bridge functional. Binary mixtures of aligned particles (77) do not require 
any modification of the present formalism. 

Hard-body fluid of arbitrary orientations. It is clear that without incorpo
rating somehow the curvature asymmetry contributions, the uniform fluid l imit 
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of / ψ Μ does not depend on the distribution of orientations. The compari
son of the PHE-weight-functions wi th the set 16 is expected to provide hints for 
how to improve the weight functions for the general distribution of orientations. 
Pending these calculations, one possibility is to treat the Hi and Κχ as "free" 
orientation-dependent parameters on the surface, which can be determined by 
imposing (approximately) the equality 15 for the bodies in question (i.e. by i m 
posing the exact second vir ia l coefficient for arbitrary distribution of orientations 
for the homogeneous fluid). Another possibility which might be explored is to 
consider orientaion-dependent weighted densities (specifically the dimensionless 
n 3-dependent coefficients) in equation 3, and correspondingly to allow Φ to be 
orientation-dependent in equation 2. It is not yet clear under what constraints it 
wi l l be possible to determine the functional form of Φ. The general functionals 
as obtained from the different methods should have the property that i n the ap
propriate l imits they reduce to the functionals $ψΜ , fpMPHE a s obtained above 
for the isotropic fluid, and for the parallel hard ellipsoids, respectively. 
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Chapter 15 

Density-Functional Theory for Nonuniform 
Polyatomic Fluids 

E. Kierlik, S. Phan, and M. L. Rosinberg 

Laboratoire de Physique Théorique des Liquides, Unité de Recherche 
Associée 765, Université Pierre et Marie Curie, 4 Place Jussieu, 

75252 Paris Cedex 05, France 

The structure of molecular and polymer fluids near surfaces and 
in thin films is a topic of great fundamental and practical interest 
which is st i l l not well understood. We present a density functional 
theory which is a generalization to inhomogeneous polyatomic flu
ids of Wertheim's thermodynamic perturbation theory for associ
ating fluids. In the local density approximation, this theory takes 
a very simple form which can be used to study the structure and 
the thermodynamics of long chains at the free surface. As an ap
plication, we compute the variations of the surface tension with 
temperature and chain length and we investigate the surface seg
regation effects due to side branching, segment size, or isotopic 
substitution. 

In the case of classical simple fluids, it is known that density functional the
ory in the van der Waals approximation where attractive forces are treated 
in a mean-field fashion while repulsive forces are represented by an equivalent 
hard sphere interaction, captures the essential physics of interfacial phenom
ena, such as adsorption or wetting at solid/f luid or l iquid/vapor interfaces (1). 
The simplest Local Density Approximation ( L D A ) where the free energy of the 
inhomogeneous hard sphere fluid is just the spatial integral of the local free 
energy density of the bulk fluid already gives the gross features of the structure 
and phase equilibria. Somewhat better results are obtained when using one of 
the so-called "weighted-density approximations" which have flourished in the 
past few years (1). In some instances, one can get quantitative predictions for 
experimental quantities like the surface tension, although the results seem to 
be rather sensitive to the choice of the interatomic potential or to the mix ing 
rules in the case of mixtures. 

0097-6156/96/0629-0212$15.00/0 
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The question that we want to investigate in this paper is the following: can 
we build the same type of theory and reach the same level of accuracy in the 
case of inhomogeneous l iquid hydrocarbons or long chain polymeric fluids ? Let 
us first briefly summarize the present theoretical situation. Leaving apart the 
scaling approaches which only focus on the universal large scale behavior (£), 
we have on one hand self-consistent field (SCF) type of calculations based on 
coarse-grained lattice models, and on the other hand Landau-Ginzburg treat
ments which use a Cahn-Hil l iard-de Gennes free energy functional gradient 
expansion in analogy with similar theories of simple liquids. The S C F meth
ods (3) which are extensions of the Flory mean-field picture to inhomogeneous 
situations, may be quite successfull in describing qualitatively the structure 
and the thermodynamics of the interfaces. But the use of a lattice model is 
a very crude representation of a real fluid, especially when packing or free-
volume effects are important, as they are near a solid surface or at the free 
interface, respectively. In the Landau-Ginzburg approaches (4,5), one usually 
assumes that the surface terms contain unknown phenomenological parame
ters which are supposed to describe both entropie and enthalpic contributions. 
Moreover, the homogeneous part of the free energy is usually described by the 
simplest Flory-Huggins expression which cannot distinguish between different 
molecular architectures or orient at ional effects. 

Therefore, there is a need for a theory which could be used to interpret 
the experimental results in terms of fundamental quantities such as interact
ing parameters, rather than phenomenological parameters. B y "interacting" 
parameters, we mean parameters which have a physical meaning at the level 
of the structural units and are reasonably independent of temperature and 
concentration. What are the ingredients that should contain this theory ? 
a) It should be a continuum (i.e. off-lattice) theory in order to describe packing 
and compressibility effects (what polymerists call equation-of-state effects), 
b) it should be able to describe the influence of chain length and chemical 
architecture on the various interfacial properties, 
c) it should describe the conformational changes of the molecules near a sur
face, 
d) and of course, it should contain energetic effects, at least in a mean-field 
fashion, as done for simple fluids. 

Density functional theory seems to be a good candidate for that and sev
eral theories have been proposed in the last few years (6Ί0). The one that we 
shall discuss in the following is called Perturbation Density Functional Theory 
( P D F T ) (11-13). Indeed, we shall first explain how we can treat perturba-
tively the influence of connectivity in the Helmholtz free energy by generalizing 
Wertheim's theory of chemical association (14) to inhogeneous fluids. It has 
been shown elsewhere (13,15,16) that for purely repulsive or athermal chains, 
this yields good predictions for the structure near a solid. Here we shall add 
attractive interactions in a van der Waals fashion and use the local density 
approximation to study l iquid/vapor interfaces. We shall see that the theory 
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214 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

is able to give the correct trends for the surface tension as a function of tem
perature and chain length. Final ly , we shall study the influence of segment 
size and side branching and consider the surface behavior of isotopic blends. 

Perturbation density functional theory 

If one wants to extend D F T to polyatomic molecules, the first thing to be 
noted is that there are different ways of expressing the minimization principle 
because one can define several local densities. For instance, for a molecule 
composed of M monomers or units or interaction sites, one can first define the 
single molecule density />Μ(ΓΙ,Γ 2 , . . , I * M ) which is the M-point joint probabil
ity distribution function for finding atom 1 at Γχ, atom 2 at r 2 , etc... But 
one can also define the individual site densities pi(r) = Jdridr2...drA/£(r — 
ΓΙ)/?Λ/(ΓΙΪΓ2Ϊ . . ,ΓΜ) ,Ζ = Ι , . , . ,Μ , the average site or monomer density p(r) = 
Σ ί ί ι Λ ( γ ) Ϊ the joint probability distribution function for 2 sites, 3 sites, etc...It 
is clear that these contracted distribution functions contain less information 
about the conformational structure than the single molecule density pM · 

It turns out that one can express the free energy either as a functional 
of the site densities pi(r) or as a functional of the single molecule density 
£ Λ / ( Γ Ι , Γ 2 , . . , Γ Μ ) · The problem with the first version which has been intro
duced by Chandler, M c Coy, and Singer some years ago (6) is that even the 
computation of the ideal part of the free energy is a nontrivial problem. This 
difficulty does not occur with a free energy expressed as a functional of the 
single molecule density. The general formulation has been stated by Pratt 
and Chandler in 1976 (17,18) in the framework of an interaction site cluster 
expansion. They showed that one can write formally the intrinsic Helmholtz 
free energy of a homonuclear chain fluid as 

fiF = J d\MpM(lM)[\npM(\M) - 1 + βινΜ{ΐΜ)] + β^χ[ρΜ], (1) 

where 1M denotes the positions r i , r 2 , . . ,ΓΛ/ of the monomers collectively and 
U>M(1M) is the intramolecular energy for an isolated molecule. The first term 
is just the ideal part of the free energy and Fex[p\f] is the excess part, ex
pressed in terms of an infinite set of cluster diagrams built with the contracted 
intramolecular distribution functions and the Mayer function associated with 
the interaction potential between sites in different molecules. Of course, this 
is a formal expression and one needs some rule to classify the diagrams in a 
systematic and sensible way. Such an approximation scheme is provided to us 
by Wertheim's work on associating fluids. What we shall use is essentially a 
generalization of Wertheim's thermodynamic perturbation theory ( T P T ) (14) 
to non-uniform fluids, in the l imit of complete association where al l molecules 
are fully formed. 

What is the perturbation scheme ? Consider for instance a linear chain of M 
monomers. The main idea consists in building progressively the molecule from 
a reference hypothetical fluid in which al l monomers are totally dissociated at 
the same temperature and monomer density as the real system. For instance, in 
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the case of pearl-necklace hard-sphere chain, the reference fluid is just the hard-
sphere fluid at the same packing fraction. Now the perturbation procedure 
consists in computing the work which is required to build up chain segments 
of increasing length in the reference system. More precisely, one can order the 
infinite sum of graphs Fex as follows 

F'X[PM) = F%[p) + F?[PM} + F?\PM) + .··., (2) 

where the first term is the excess Helmholtz free energy of the reference 
monomeric fluid, F{x represents the work to build a single chain in the refer
ence fluid, Flx + F\x the work to build two chains together, etc... Keeping only 
the first two terms corresponds to what is called the "single chain approxima
t ion" ( S C A ) : this means that the atoms on the chain see the rest of the fluid 
as an atomic system. Usually, one stops at this level. It can be shown that 
F{x has the following expression (13), 

βΡ?[ΡΜ] = ~ J dlMpM(lM) l n ( y r e / ( l M ; M ) , (3) 

where yref is the M-point cavity function in the reference system. Then it is 
clear that all phenomena involving interactions between two or more chains 
cannot be described. This is the case for instance of the isotropic to nematic 
transition in the case of semi-flexible molecules. If one wants to study this 
problem, one must work at least at the level of the two-chain approximation. 
However, even staying at the level of the S C A does not provide a tractable 
theory because the intramolecular potential WM st i l l contains al l the M-body 
excluded volume effects. One then breaks the chain into smaller segments and 
considers the work needed to build these segments independently. A t the lowest 
order, the chain is just a succession of M — 1 dimers and this is WertheinVs 
T P T 1 theory. Then, the density functional has the following expression; 

fiFrPTilPM] = j<11ΜΡΜ(1Μ)[ΗΡΜ(ΙΜ)) - 1 + fiw^lm)] + fiF£f[p] 

- j dWj i# ( lA#) ln [y r e / ( l , 2 )y r e / (2 ,3 ) . . . y r e / (M - 1 ,M) ] , (4) 

where yref(i,j) is the reference pair cavity function and w*M contains the bond
ing potential, but not anymore the intramolecular van der Waals interactions 
which are responsible for the intra-chain excluded volume effects. Of course, 
both Ffxj and yref must be treated as functionals of the average monomer 
density p(r) and this may be a complicated problem per se. O n the other 
hand, considerable simplification occurs within the local density approxima
tion which consists in evaluating the excess part of the Helmholtz free energy 
(i.e. the last two terms in E q . (4)) by integrating over the whole volume the 
excess free energy density of the uniform fluid with density p(r). 

What is the physics behind all this and when should this perturbative ap
proach work ? Firs t , it is known from Flory that in concentrated polymeric 
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fluids, long range intramolecular excluded volume effects are screened out by 
intermolecular interactions so that one can take into account only local inter
actions (19). This is the justification, for instance, of the Rotational Isomeric 
State model. More generally, this gives some rationale to the T P T scheme at 
high densities. In counterpart, it is clear that this type of theory is unable to 
reproduce the correct scaling behavior in the high molecular weight l imit for 
diluted or semi-diluted solutions. Secondly, we note that this type of approach 
is quite common in polymer physics and is related to the self-consistent field 
theory introduced by Edwards (20) which is an extension of the Flory-Huggins 
mean-field picture to non-uniform situations. This can be better understood 
by looking at the Euler-Lagrange equations obtained by minimization of the 
T P T 1 grand potential in the L D A (for a repulsive homonuclear chain of M 
segments with bonding length d), 

M 

PM(IM) = βχρβ[μ Λ / -ιν*(1Μ)-ΣΦ(Τχ)} 
i=l 

V'(r) = v(r) + '— 
dp 

M - 1 
M ^ r [ l n y r t / ( < f , p ( r ) ) + p ( r ) 9 1 n y " { > ^ ( r ) ) l ; (5) 

where PM is the polymer chemical potential and yrej(d, p(r)) is the pair cavity 
function at distance d in a homogeneous system with local density p(r). E q . (5) 
shows that this approximation corresponds to an ideal polymer melt submitted 
to an external potential φ which is the sum of the real external potential v(r) 
plus an effective potential field which arises self-consistently from the average 
monomer density profile p(r). We know that this type of approximation gives 
its best results when monomer density fluctuations can be ignored, which is the 
case in concentrated solutions and melts. To be complete, we must note that 
the ful l version of the theory (i.e. with no L D A ) is more elaborated than the 
usual S C F theories because the basic variables in the self-consistent equations 
are the two-site densities (IS). 

Final ly , in the long chain l imi t , the S C F equations which essentially de
scribe a biased random walk can be transformed as usual into a diffusion 
equation for the propagator (20) 

GM ( r , r') = j dlMP(\M)S{T - η)*(r' - r M ) (6) 

which is the unnormalized probability for finding monomer 1 at r and monomer 
M at r'. However, we would like to point out that with today's powerful 
computers, it is easier to calculate directly the path integral for the ideal 
chain than to solve the diffusion equation. This is also true when dealing with 
branched molecules. 
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Results 

It is shown elsewhere that the full version of the T P T 1 theory with a weighted 
density approximation for the hard-sphere part of the free energy provides a 
faithfull representation of the site density profile of semi-flexible chains of tan
gent hard spheres in the vicinity of a hard wall (15,16). The agreement with 
the simulation improves as the stiffness of the molecule increases. In the follow
ing, we shall only focus on the l iquid/vapor interface where we can safely use 
the L D A . Therefore, we add an attractive Lennard-Jones interaction between 
non bonded sites in order to get phase separation. This attraction is treated in 
a mean-field fashion and we use the Barker-Henderson division of the potential 
(21) . For the sake of simplicity, the equivalent hard-sphere diameter and the 
bonding length are both taken equal to σ. So we sti l l consider tangent units 
and molecules are supposed to be totally flexible. 

Now, we can solve the equation of state for the l iquid/vapor equil ibrium 
and compute the surface tension to plot universal curves in reduced units as 
a function of temperature and chain length. In qualitative agreement with 
experiments, we see in F i g . 1 that for a homologous series of liquids, the 
surface tension η increases and the surface entropy —d^/dT decreases with 
molecular weight. These results are similar to those predicted by the widely 
used Poser-Sanchez lattice fluid theory (22). When the chain length goes to 
infinity the surface tension approaches a l imit ing value and F i g . 2 shows a 
clear 1 / M dependence, which is also in agreement with experiment for high 
molecular weight polymers (23). 

The advantage of our D F T over previous theories is that we can study quite 
easily the effect of the molecular architecture or segment size on surface phe
nomena. Let us first consider the effect of side branching. In F i g . 3, we show 
the surface segregation in an equimolar blend composed of linear chains of 49 
units and branched chains which have the same total number of segments but 
with a side group hanging off every three backbone units. The segment size and 
the attractive interactions are the same. This can be related to recent experi
ments which have been performed for copolymer blends of polyethylene ( P E ) 
and polyethylenepropylene ( P E P ) (24), although we have not tried to make 
any adjustment of the parameters. It has been observed experimentally that 
the more branched component segregates to the surface. This is indeed what 
we find: in F i g . 3.a we show the segment density profiles at the l iquid/vapor 
interface and in F i g . 3.b the relative volume fraction of the branched compo
nent (the Gibbs dividing surface is approximately located at ζ = 0). There has 
been some controversy in the literature about the physical origin of this surface 
segregation. It has been suggested that it was a purely entropie effect due to 
the difference in the statistical lengths of the components (25). Our study of 
this system as a function of temperature seems to show that actually there is 
a subtle interplay between entropie and enthalpic contributions, a conclusion 
which has also been reached by Yethiraj in a simulation of the same system at 
the solid/f luid interface (26). 
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Figure 1. Polymer surface tension of the l iquid/vapor interface as a 
function of temperature and chain length in reduced units. 
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Figure 2. Surface tension as a function of 1 / M at various temperatures. 
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(a) ce 

linear chain 

M = 49 
T* = l 

Figure 3. Effect of side branching on surface segregation at the l iquid-
vapor interface ( M = 49, T* = 1). 
3a) Segment density profiles of linear (dotted line) and branched chains 
(solid line). 
3b) Relative volume fraction of the branched component. 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
01

5

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



15. KIERLIK ET AL. DFT & Nonuniform Polyatomic Fluids 221 

The effect of segment size disparity on surface segregation phenomena has 
not yet been studied in the littérature because it is difficult to include this 
feature in a lattice model or in a phenomenological square gradient theory. 
In F i g . 4, we show what happens for an equimolar mixture when the two 
chains have the same number of units (M = 100) and the same van der Waals 
interactions, but the sizes of their monomers differ by 2%. We find rather 
surprisingly that there is a strong surface enhancement for the chain with the 
largest size. The effect becomes less pronounced as the temperature increases 
and again there is probably an interplay between entropie and energetic effects. 

So far, we have not tried to make quantitative comparison between our 
predictions and experimental data. For that purpose, we must choose some 
numerical values for the interaction parameters. In principle, three parameters 
can be adjusted, the chain length M , the segment size σ and the energy param
eter of the L J interaction e. Since the freely jointed sphere model is a rather 
coarse-grained representation of a real molecule, it is not clear that a sphere 
corresponds to a single repeat unit or to several monomers. For clarity, we 
shall decide that M indeed corresponds to the real number of repeat units. It 
remains the problem of determining σ and e. Since a calculation from first pr in
ciples seems totally hopeless, we have to treat these quantities as adjustable 
parameters, hoping that the theory has sufficient realism at the microscopic 
level to warrant meaningful comparison with the experiment. We know that 
even for simple fluids it is very difficult to reproduce both bulk and surface 
properties with the same values of σ and t (27). Therefore, we shall make the 
choice of adjusting these parameters to a surface property, namely the surface 
tension. In F i g . 5, for instance, are shown the results for the variation of the 
surface tension of P D M S (polydimethylsiloxane) as a function of temperature 
for two different molecular weights corresponding respectively to chains of 10 
and 432 units. It can be seen that reasonable agreement between theoretical 
predictions and experiments (28) can be reached with the values σ = 4.85Â 
and e/k = 324 / i . Now, we can use these values to study the surface tension of 
a blend composed of these two chains and vary the composition of the shortest 
one. F i g . 6 shows a good agreement with the experiments (29), which proves 
that the theory is able to describe accurately polydispersity effects. 

As a final example, we present some results for isotopic polystyrene blends. 
These blends have attracted considerable interest in the last few years because 
the replacement of the hydrogen atom by deuterium causes enough change 
in the zero-point energy of the macromolecule that a mixture of sufficiently 
high molecular weight can phase separate (SO). Even in the one-phase region, 
there is also significant segregation at the free surface that can be studied by 
neutron reflectivity or secondary ion mass spectrometry (SIMS). When the 
chains, protonated and deuterated, have the same length, it is found that the 
deuterated component always partitions preferentially to the surface because 
of energetic considerations (CDD is slightly lower than €////) (SI)- But when the 
protonated chain is much shorter than the deuterated one, it goes to the surface 
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0.6 Ι ' 1 1 1 1 ' 1 1 1 1 1 1 1 1 p 

0.4 -

-30 -20 -10 0 

ζ / σ 

Figure 4. Influence of segment size disparity on surface segregation at the 
l iquid/vapor interface. The two chains have the same number of units 
(M = 100). The dotted line represents the segment density profile of the 
chain with the largest segment size. 
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T e m p e r a t u r e T ( e C) 

Figure 5. Surface tension as a function of temperature for two samples 
of P D M S with Number Average Molecular Weights Mn = 32000 g /mol 
and Mn = 770 g /mol . The solid lines are the predictions of P D F T . The 
symbols are experimental results of Dee and Sauer (28). 
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19 Ι 1 1 1 1 1 1 1 [ 1 1 1 1 1 1 1 1 1 1 Γ 

165 I 1 1 1 1 ' 1 1 1 1 » 1 1 ' ' ' 1 1 1 1 

0 0.2 0.4 Ο.β 0.8 1 

Wt. Frac . PDMS (770g/mol ) (M-10) 
Figure 6. Surface tension of a blend of P D M S (Mn = 32000 g/mol) and 
P D M S (Mn = 770 g/mol) as a function of the weight fraction of the 
low molecular weight conponent. The solid lines are the predictions of 
P D F T . The symbols are experimental results of Dee and Sauer (29). 
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because of entropie effects (32). This has been termed as "the reversal of the 
isotopic effect". This effect can be predicted rather accurately by our theory. 
In our calculation (for a bulk composition x(PSD) = 0.48 and at Τ = 433#), 
the length of the deuterated chains is kept constant and equal to 1000 units 
and the length of the protonated chains is varied from 20 to 500 units. The 
CHH and σ parameters for the protonated polystyrene have been adjusted on 
pure surface tension data (28) and CDD for the deuterated component has been 
adjusted to reproduce the experimental results for isotopic blends with chains 
of the same length (32). We clearly see in F i g . 7 the reversal of the isotopic 
effect as the length of the protonated chain decreases. We have plotted in F i g . 
8 the relative surface enhancement of the deuterated chain as a function of the 

Figure 7. Relative volume fraction of deuterated polystyrene ( M ( P S D ) 
=1000) as a function of the polymerization degree of the protonated com
ponent. Solid line : M ( P S H ) =20; dotted line : M(PSH)=200; dashed 
line: M(PSH)=500. 
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τ 1 r — ι 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Γ 

1 1 1 I 1 I I I I 1 I I I I I 1 1 I 1 1 1 1 1 1 

0 100 200 300 4 0 0 500 

Degree of po lymer iza t i on of PSH 
Figure 8. Reversal of the isotopic effect as a function of the degree of 
polymerization of P S H . 

degree of polymerization of the protonated component. The cross-over occurs 
near M(PSH) ~ 200 which is in much better agreement with the experimental 
value ~ 500 than lattice fluid calculations (33). One may expect to improve 
further the predictions by introducing some rigidity in the molecular model. 

C o n c l u s i o n 

We have presented a density functional theory for inhomogeneous polymeric 
fluids, based on perturbation theory, which can predict surface properties with 
a level of accuracy comparable to what is reached in simple fluids. The use 
of the L D A for the l iquid/vapor interface allows to perform calculations for 
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chains with several hundreds of units. This theory is best suited for study
ing surface segregation effects in blends. Extension to copolymer systems is 
straightforward. 

A c k n o w l e d g m e n t s . We are grateful to G . T . Dee and Β. B . Sauer for having 
sent us their experimental data for P D M S . 
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Chapter 16 

A Density-Functional Approach 
to Investigation of Solid-Fluid Interfacial 

Properties 

D. W. M. Marr 1 and A. P. Gast2 

1Chemical Engineering and Petroleum Refining Department, 
Colorado School of Mines, Golden, CO 80401-1887 

2Department of Chemical Engineering, Stanford University, 
Stanford, CA 94305-5025 

We present a formulation of density-functional theory ideally suited 
for investigation of solid-fluid interfacial properties. We use this ap
proach to investigate the role of interactions in determining both 
the energy and structure of the interface by examining a number of 
systems including hard-sphere, adhesive-sphere, and Lennard-Jones 
fluids. In addition, we study the orientational dependence of inter-
facial properties in the adhesive-sphere system. 

Despite its ubiquity in nature, remarkably l itt le is known of the solid-fluid i n 
terfacial structural and energetic properties. The reason for this lies in the 
difficulty in experimentally assessing the interface; most materials of technolog
ical importance (e.g. metals) are not transparent making observation extremely 
difficult [1]. Efforts to experimentally study the solid-fluid interface often cen
ter around removal of the solid phase from the equil ibrium fluid but lead to 
a modified interface, frustrating efforts to examine the equi l ibrium structure. 
One can also employ a rapid temperature quench, some k ind of sectioning, and 
then microscopy but this method is applicable only to multi-component sys
tems. Methods of experimentally determining solid-fluid interfacial tensions can 
involve the measurement of grain boundary intersection angles or the study of 
grooves in the crystal surface but are normally applicable only to a few systems. 

Results from computer simulation are also l imited. The complexity of the 
solid-fluid interface makes computational approaches extremely costly and has 
l imited study to only a few systems, for which a nice review is available [2]. 
Because of the l imited amount of computational or experimental study, l itt le is 
known of the influence of the interaction potential on the structure and energy 
of the interface. In general, we expect that the interface to become extremely 
sharp at low temperatures due to its low entropy. As temperature increases, 
however, the interface wi l l widen and the transition from solid to fluid w i l l occur 
over a larger distance. The interface width wi l l be l imited, though, by the high 

0097-6156/96/0629-0229$15.00/0 
© 1996 American Chemical Society 
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energetic cost of producing regions having a density different from that of either 
coexisting equil ibrium phase. A t a given temperature for a specific interaction 
these factors combine to give a min imum in the free energy of the interface at 
a particular interfacial width. A number of questions immediately arise: How 
wi l l the interactions between particles influence the broadening of the interface? 
W i l l attractions have a strong influence or do repulsions alone determine i n 
terfacial structure? How do these influences change with interface orientation? 
Answering these questions requires a technique that can readily determine i n 
terfacial thermodynamic properties as a function of interaction potential in a 
computationally tractable manner. 

T h e o r e t i c a l A p p r o a c h 

The thermodynamic properties of a variety of model fluid systems are well es
tablished. In general, liquid-state theory allows one, wi th knowledge of the 
interaction potential, to determine correlations between particles within the ho
mogeneous fluid phase. Combined with a closure appropriate for the interaction 
potential of interest, one can obtain thermodynamic properties such as the pres
sure and chemical potential of the homogeneous fluid. 

Determining the thermodynamic properties of the solid phase is much more 
difficult. One cannot apply the equations of liquid-state theory directly and the 
use of computer "experiments" such as Monte Carlo or molecular-dynamics s im
ulations is both difficult and computationally demanding. Due to the success of 
liquid-state theory, there has been much effort in describing the solid state with 
l iquid properties, leading to the development of density-functional theory. Re
cently, density-functional theory has provided a means to describe the structure 
and energetics of the solid phase. In addition to facility with the homogeneous 
solid phase v ia the principles of liquid-state theory, density-functional theory has 
allowed description of interfaces and other inhomogeneous systems. 

Whi le there are a number of implementations of density-functional theory for 
studying phase transitions, al l of them seek to describe the structure and proper
ties of the solid phase from information about the fluid. Several excellent reviews 
of the different density-functional approaches have recently appeared [3-8]. B a 
sically, we can place the density-functional theories into two categories: i) The 
description of the solid phase through a truncated functional Taylor expansion of 
the η-particle direct correlation function [9,10] and ii) the description of the solid 
phase through appropriate choice of an effective l iquid approximating its ther
modynamics [11-13]. The latter approach, while somewhat ad hoc, is quite suc
cessful in the description of hard sphere solids [11,12,14-20]. Once the effective 
l iquid density is chosen, the description of the solid becomes a matter of apply
ing information available for the l iquid state. There are a range of approaches 
for choice of the effective l iquid from the early effective l iquid approximation 
( E L A ) of Baus and Colot [12], where an ad hoc but physically appealing com
parison of structure was invoked, to the computationally demanding weighted 
density approximation ( W D A ) of C u r t i n and Ashcroft [13]. More recent criteria 
for choosing an effective l iquid density bring the Baus and Colot effective l iquid 
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approximation ( G E L A and S C E L A [11]) into accord wi th the weighted-density 
approaches [8]. We focus on the approach of C u r t i n and Ashcroft [13] who de
fine a weighting function which links the solid and l iquid states. This approach, 
known as the weighted density approximation ( W D A ) , involves the determina
tion of a spatially variant weighted density where fluid properties approximate 
those of the solid. This method has been effective in predicting solid properties 
and phase coexistence but its application to more complex problems has been 
hindered by the computational requirements in the determination of weighted 
densities. To overcome these difficulties, Denton and Ashcroft have developed 
the modified weighted density approximation ( M W D A ) [15]. In contrast to the 
W D A , this approach requires only calculation of a spatially invariant weighted 
density and significantly lowers computation time. 

In order to study the structural details and energetics of the solid-l iquid inter
face, one must determine the appropriate weighted density to model each density 
through the interface. This can be done wi th the W D A [16,17]; however, the 
calculation requires tremendous computational effort making it impractical for 
complex situations. We are interested in systems including finite interparticle i n 
teractions where the densities of coexisting phases wi l l depend on temperature. 
In this situation, the interfacial structure and energy must be determined for 
a variety of temperatures, significantly increasing the required amount of com
putation and motivating the development of a tractable approach to describe 
the interface. Encouraged by the success of the M W D A in decreasing the com
putational requirements of the W D A , we developed a planar weighted density 
approximation ( P W D A ) to describe the interface [21]. 

One begins by separating the total Helmholtz free energy of the solid phase 
into two components 

F\p] = Fia\p] + FKM (1) 

representing the ideal and excess contributions to the total free energy. The 
ideal term can be calculated for any given density distribution p(r) from 

FiM = β~ι J < M r ) [ l n ( , (Γ)Λ 3 ) - 1] (2) 

where β = 1/kT and Λ is the de Broglie wavelength, and the total excess free 
energy can be expressed as the sum of local contributions 

Ftx[p) = J άτρ(τ)φ(τ;[p]) (3) 

where φ is the local excess free energy per particle. 

W e i g h t e d - D e n s i t y A p p r o x i m a t i o n . C u r t i n and Ashcroft [13] approximated 
the local excess solid free energy per particle wi th the excess free energy per 
particle of a homogeneous fluid, indicated by a subscript 0, evaluated at some 
effective l iquid density 

F e r A M = /drp(r)VoG>(r) ) (4) 
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where the effective l iquid density is a weighted average of the local solid densities 
in the vic inity of r . In the W D A , the spatially variant effective l iquid density is 
defined by 

p(T) = JdT'p(T')w(T-v';p(r)) (5) 

where the weighting function w is introduced with the normalization requirement 

J drw(r-r';p) = 1 (6) 

and is determined by requiring the exact 2-particle direct correlation function c 
to be recovered in the homogeneous l imi t , 

-β ^ ( r - r ' ; p 0 ) = l i m e x . (7) 
P->PO d/)(r)()/)(r') 

Solving for w is most readily done in Fourier space, leading to the following 
differential equation 

-β 1c0(k;p0) = 2^-w(k;p0) + p0S~ 9φο 2 w (k;p0) (8) 

M o d i f i e d W e i g h t e d - D e n s i t y A p p r o x i m a t i o n . The M W D A [15] differs from 
this approach in that the excess Helmholtz free energy is calculated from a 
spatially invariant weighted density, 

F - W D A W = A W ) (9) 
where Ν is the number of particles and the weighted density determined from 

P=jfJ drp(r) J dr'p(r')w(r - r ' ; p). (10) 

Using the normalization condition (equation 6) and imposing the exact fluid free 
energy in the homogeneous l imit (equation 7) one obtains 

-β-'^ρο) = 2 ^ U ; ( * ; A , ) + < W o ^ f . ( H ) 

This equation for w(k,p) is easier to solve than the W D A ; it is proportional to 
the direct correlation function (for non-zero k) and does not involve the solution 
of a non-linear differential equation. The M W D A requires a great deal less com
putation and is therefore the preferred approach for the study of the transition 
from l iquid to solid [4,7,8,19,22-24]. 

P l a n a r W e i g h t e d - D e n s i t y A p p r o x i m a t i o n . In systems such as the solid-
fluid interface where the bulk density varies with position, one cannot apply 
the M W D A because of the need to retain a spatially-varying weighted density. 
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C u r t i n [17] has applied the W D A to the interfacial problem with good results 
but after significant computational effort. One can, however, lower these require
ments while st i l l retaining the physical approach to the problem by incorporating 
the M W D A into the interface [21]. This is done by realizing that the bulk den
sity parallel to a planar interface remains constant. In the spirit of Denton 
and Ashcroft's reduction of the computational requirements for W D A models of 
bulk systems, one may approach the interface wi th a planar-aver aged spatially-
variant weighted density that w i l l significantly decrease calculation costs. Other 
authors have succeeded in modelling systems such as a hard-sphere fluid next to 
a hard wall [25-28] with a one-dimensional weighted density; however, efforts to 
describe the freezing transition with such a weighted density have not led to a 
stable solid. 

One begins by expressing the excess free energy in terms of the planar-
averaged density p(z) and a planar-averaged free energy 

Fex[p] = j άτρ(ζ)φ(ζ) (12) 

p{z) = 1 J dxdyp{v). (13) 

This i l o ca l ' free energy is now approximated with that of a homogeneous fluid 
evaluated at some planar weighted density p(z) 

F!rA[p] = J άνρ(ζ)φΰ{p{ζ)), (14) 

determined self-consistently from 

/ dxdypjr) / d^pj^wjr - r ' ; p(z)) 
P y } Jdxdyp(r) { ] 

where once again the weighting function is determined from the normalization 
condition (equation 6) and the requirement on the l imit ing behavior (equation 7). 
In Fourier space one obtains 

-β 1Cv(k;p0) = 2^w(k;po) + Sk^op0^ (16) 

reducing to the W D A weighting function in the k|| = 0 case and the M W D A 
weighting function when k|| is non-zero. This approach incorporates many of 
the computational savings inherent in the M W D A and yet is applicable to the 
determination of solid-fluid interfacial properties. 

B u l k P r o p e r t i e s . In order to solve these equations for the solid free energy 
one must first model the solid structure. As proposed by Tarazona [20], the 
solid phase density distribution can be represented as the sum of normalized 
Gaussians 

* « = ( j ) 3 / 2 E e - a ( r - R ) 2 (17) 
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Figure 2. Example solid-fluid interface (The peaks have been cut short to 
better illustrate the transition). 
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where R are the Bravais lattice vectors, or in Fourier space as 

Ρ.(τ) = Ρ.+ ΣΡοέβ* (18) 
G^O 

where G are the reciprocal lattice vectors and pG = pse~G2lAa. The parameter α 
describes the structure of the solid; the higher the value of a the more localized 
the structure and a value of zero corresponds to the homogeneous fluid. Figure 
1 illustrates this solid-phase parameterization. 

To determine the solid-phase thermodynamic properties one minimizes the 
total free energy for a given solid density wi th respect to a. A global min imum 
occurring at a non-zero α indicates a stable solid phase, determining both the 
stable α and excess free energy corresponding to a given solid density. The 
total free energy is found by adding the ideal and excess contributions. Phase 
coexistence occurs when the chemical potential μ and pressure Ρ of the solid 
and fluid phases are identical. 

Ρ = p(μ-Ρ[p]/Ν) = p > ^ 1 (20) 

I n t e r f a c i a l P r o p e r t i e s . C u r t i n [16,17] has developed a convenient two pa
rameter model in his application of the W D A to the solid-fluid interface. He 
represents the solid as the sum of Fourier components as before but now allows 
these components to decay as one makes the transition from solid to l iquid along 
the ζ direction across the interface: 

p(r) = P l + (p. - Pl)fo(z) + ΣPofa(z)eiGr (21) 
G 

where 
[ 1 \z\< z0 

fG(z)=\ 1 (1+cos ( π ^ ) ) z0<\z\<zG (22) 
1 0 zG< \z\ 

z0 is the position of the solid-fluid interface boundary, Az the interface width , 
/ 0 ( z ) = fGl(z), AzG = (Gi/G)"Az — zG — Z0, and ν the decay rate of the higher 
order Fourier components. Figure 2 shows an example of this interfacial profile 
parameterization where the peaks have been truncated for clarity. One can now 
express the weighted density in the P W D A in terms of the reciprocal lattice 
vectors and the Fourier transforms w(k\p) and /G (&) as 

p{z) = pi + (p.-p,)±fJdkeik'w(k;pXz))M-k) (23) 
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+ (/?/ + ( ; a ' ; ) Λ ( * } ) /dkw(k^))eikzE^oPofG(k + Gz) Ζπρ(ζ) J Q 

+ 2 4 j / * Ç ' ^ ° ^ > e " a " ' " 

x Σ ^ . Ί Ι . - σ ι Ί Ι / ΐ σ ^ ( ( ^ „ + k^p(z))fGj(k + GJ2) 

where G|| = (Gx,Gy). Though this equation appears quite complex, the delta 
functions in the second and third terms evaluate to zero for many of the reciprocal 
lattice vectors used in the summation. 

In order to determine interfacial properties one must first calculate bulk prop
erties including the pressure, chemical potential, solid localization parameter and 
the densities of the coexisting bulk phases following the procedure outlined in 
the previous section. Whi le μ and Ρ remain constant throughout the interface, 
the coexisting densities define the boundary conditions on the interfacial profile. 
Min imiz ing the excess grand potential Δ Ω 

Δ Ω [ Ρ ( Γ ) ] = F[p(r)} -μ]dvp{v) + PV (24) 

determines both interfacial structure and energy. App ly ing equations 1 and 2 
and the P W D A one obtains 

Δ Ω [ Ρ ( Γ ) ] = F:rA[p(r)} + PV (25) 

+ / < / r p ( r ) [ r 1 { l n ( p ( r ) A 3 ) - l } - ^ ] . 

Final ly , after applying equation 14 and defining 

Uz) = j j dxdyp{v)\np{v) (26) 

μ = / ? μ - ( 1 η Λ 3 - 1 ) (27) 

one obtains the interfacial tension as 

Δ Ω 
= U άζ{p(ζ)[βψ,(p(ζ)) -μ) + Mz) + βΡ} 

rain P J 
(28) 

Interfacial Properties of M o d e l Systems 

The equi l ibrium phase behavior of a system is dictated by the interaction po
tential between individual particles. Phase transitions induced by attractions 
depend on the depth of the attractive min imum as well as the range of the inter
action. Generally speaking, systems having a deep attractive well separate into 
a dense solid phase and a dilute vapor. It has been postulated that a long-range 
attraction is required to produce a triple point and vapor-liquid coexistence. It 
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Table I: Hard-sphere phase coexistence predicted by the various 
weighted density approaches compared to simulation results 

pfa3 psa3 

W D A [13] 
M W D A [15,18] 
P W D A 
M C [33] 

0.881 1.02 
0.912 1.044 
0.882 1.026 
0.943 1.041 

is unclear, however, how the individual factors of range and depth contribute 
to the phase behavior since most interactions include both and their influence 
is highly coupled. This is a question of current and continuing interest [29-31]. 
One can extend this and ask how these factors influence not only the phase be
havior but also the interfacial properties between phases. In an effort to answer 
this question, we look at the solid-fluid interfaces of a number of model systems, 
beginning with one of the simplest models available and then gradually adding 
complexity to the interactions. 

Hard Spheres. The hard-sphere system is a purely repulsive model often em
ployed in statistical mechanics and described by the following interaction poten
t ia l 

u(r)/kT = {~ (29) 

with σ the hard-sphere diameter. Because of its simplicity there exist analytic 
solutions for the fluid-state properties φ0(p) and CQ(k\p) in the Percus-Yevick 
approximation [32], making application of the P W D A relatively straightforward. 

From simulation [33,34] the properties of the coexisting solid and fluid phases 
are well known. It has been found that, at equil ibrium, the hard-sphere solid 
phase preferentially organizes into a close-packed structure. We study the i n 
terface along the densest face (111) of the close packed face centered cubic (fee) 
lattice, where the distance between planes is δηί = a/y/3, a being the fee lattice 
constant = (4/psy/3. We see excellent agreement between the P W D A and both 
the W D A and the M W D A in a calculation of the hard-sphere order-disorder tran
sition (see Table I). A l l three of the theories agree reasonably well wi th Monte 
Carlo simulations justifying their use in describing the hard-sphere system. 

There exist few studies of the hard-sphere interface; however, we compare 
results from the planar-averaged approach to those obtained using the fully three-
dimensional W D A . The two theories agree extremely well w i th 7 W D A a 2 / f c T = 
0.63 ± 0.02, AzWOA/Slu = 3 - 4 and 7

P W D V 2 / f c T = 0.60 ± 0.02, Αζρν/ΌΑ/δηι = 
3 — 4. Also , the absolute magnitudes of the interfacial tensions determined for 
this system agree fairly well wi th an experimental estimate for the hard-sphere 
interfacial tension of Q.55kT/a2 [35]. 
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Adhesive Spheres. First introduced by Baxter [36], the adhesive hard-sphere 
system has zero range but a variable attractive strength represented by 

where the parameter τ is a dimensionless measure of the well depth. A value 
of τ = 0 corresponds to infinite attraction or zero temperature while a value 
of τ —y oo corresponds to infinite temperature and hard-sphere behavior. The 
interaction parameter τ has been related to well depth in the square-well system 
[37] and temperature in experimental systems [38] by equating second v ir ia l 
coefficients. 

The adhesive hard sphere is an excellent system to study for two reasons. 
F i rs t , it provides a system for study of the influence of attractive strength on 
phase behavior by decoupling the influence of interaction range. The second, 
and far more practical reason, is that there exist analytic solutions in the Perçus 
Yevick ( P Y ) approximation for the direct correlation function and the excess free 
energy per particle; having analytic solutions simplifies calculation significantly. 
Both Seaton and Glandt [39] and Kranendonk and Frenkel [40] have performed 
Monte Carlo simulations on the adhesive-sphere system and found good agree
ment with the P Y solution, at least to moderate densities. Its rich phase behav
ior [36,41-46] has stimulated interest in adhesive spheres as a model system to 
describe colloidal interactions including interactions between micelles [47,48] and 
those involving colloidal silica with surface grafted octadecyl chains in marginal 
solvents [38,49-55]. 

B u l k P r o p e r t i e s . Figure 3 shows the results of our calculations for the adhe
sive sphere phase diagram. We obtain identical coexisting solid and l iquid phase 
densities, within computational error, for the fee and hexagonal close packed 
(hep) lattices and find the body centered cubic (bec) phase to be metastable. 
We were unable to continue the phase diagram below a value of r = 1.3 for the 
fec/hep lattices and τ = 1.1 for the bec lattice; below this point, we could not 
find a self-consistent solution for the weighted density. As the interactions are 
increased, solid phase coexistence occurs at higher densities and correspondingly 
larger values of a , resulting in smaller values of the weighted density. As τ is 
lowered below 1.3 for the fee or below 1.1 for the bee lattice, no weighted density 
can be found. 

Despite its relative simplicity, we find a broadening in the density difference 
between the coexisting fluid and solid phases wi th decreasing temperature τ 
characteristic of more complex interaction potentials. Unfortunately we were 
unable to calculate the solid-fluid phase behavior down to τ low enough test 
the existence of a triple point and hence the relevance of the vapor-liquid phase 
envelope. 

I n t e r f a c i a l P r o p e r t i e s . As with the hard-sphere study, we study the inter
face along the densest face (111) of the fee lattice. As in the phase diagram, the 

0 < r < σ' 
σ' < r < σ (30) 
σ < r 
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Table II: Results for the fee solid-fluid adhesive-sphere interface 

τ ' i ll 7 σ 2 / Α ; Τ Ί/ΑΗρ^ 

10.0 
5.0 
3.0 
2.0 
1.7 
1.5 

oo 3-4 
3-4 
3-4 
3 
3 
3 
2 

0.71 ± 0.02 0.48 
0.74 ± 0.02 0.49 
0.75 ± 0.02 0.47 
0.80 ± 0.02 0.46 
0.91 ± 0.02 0.44 
1.12 ± 0.01 0.48 
1.25 ± 0.01 0.49 

adhesive sphere system mimics the interfacial behavior of more complex systems. 
As we lower the interaction parameter r , the interface narrows and the interfa-
cial tension increases. One rather striking result appears when one normalizes 
the calculated interfacial tensions as suggested by the empirical expression of 
Turnbul l [56] who found that ^/AHp2J3 ~ 0.45 for metallic elements. We find 
that the calculated interfacial tensions follow 7/' AHp2JZ ~ 0.47 as summarized in 
Table II. This rule persists as τ is decreased and the density difference between 
coexisting phases increases. 

T h e L e n n a r d - J o n e s F l u i d . To extend the treatment of the interface to i n 
clude systems having both attractive interactions and range the Lennard-Jones 
potential 

is useful where T* = kT/e, e is the attractive well depth and σ the distance r 
where the potential equals zero. 

T h e o r e t i c a l A p p r o a c h . It is difficult, however, to apply the previous ap
proach directly to studies of the Lennard-Jones potential due to the lack of an
alytic expressions for the fluid phase direct correlation function c(r) and excess 
free energy per particle φ(p). We therefore follow Barker-Henderson perturba
tion theory [57] separating the potential into structure determining repulsions 
and perturbative attractions that modify system energetics. We model this sys
tem as hard spheres of an effective diameter d (= /0

σ dr[l — e~u^]) and include 
attractions as a mean-field perturbation whose magnitude is determined from 
the effective hard-sphere system structure and the interaction potential. To first 
order in the attractive perturbation, the resultant free energy is 

F{P) = (32) 

where gha is the effective hard-sphere radial distribution function. One can ex
press this in the language of density-functional theory by dividing the excess free 
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energy from equation 1 into a hard sphere and an attractive term 

F[p] = Fid[p) + F e
h > ] + F£[p}. (33) 

The ideal and hard sphere excess terms can be calculated as shown previously 
and the attractive functional approximated as a density dependent function with 
equation 32 giving 

F:?[p] ~ 2πΑβ-> J dzp(z)p(z) jT dr'g0(r'; p{z)-d)u^r')rn. (34) 

I n t e r f a c i a l P r o p e r t i e s . Using this approach we have computed the phase 
diagram, determining bulk properties, μ, Ρ, and the solid localization parameter, 
a , as a function of temperature. We then use the P W D A with equations 33 
and 34 to determine the interfacial weighted densities and their associated free 
energies. We summarize the resulting interfacial tensions in Table III. 

Table III: Calculated interfacial tensions for the Lennard-Jones solid-liquid 
(S-L) and solid-vapor (S-V) systems 

T* transition 

interface 
width 

Δζ/διη 

fluid 
density 

pfa3 

solid 
density 

Ρ*σ3 

interfacial 
tension 
>yo2/kT Ί/ΔΗρ]!3 

1.15 S-L 3-4 0.992 1.104 0.87 ± .02 0.66 
0.617 S-L 3-4 0.962 1.063 0.82 ± .02 0.69 
0.44 S-L 3-4 0.950 1.046 0.83 ± .02 0.76 
0.44 S-V 2 1.7· 10" 5 1.046 2.38 ± .01 0.14 
0.40 S-V 2 3.6 · 10 " 6 1.060 2.72 ± .01 0.11 
0.36 S-V 2 5.1 · ΙΟ" 7 1.073 3.15 ± .01 0.10 

It is interesting to note the failure of the Turnbul l empiricism for this interac
tion potential. In fact, as the triple point is approached from above, agreement 
becomes progressively worse, indicating the influence of strong long-range at
tractions. 

I n t e r f a c i a l O r i e n t a t i o n 

As discussed previously, the density-functional approach can be used to examine 
the various crystal structures and their solid-fluid interfaces. One issue not yet 
addressed is how and whether the various possible interfacial structures, for a 
given lattice, w i l l have different surface energies. How these structural differences 
wi l l impact the interfacial energetics is a question now accessible using density-
functional theory. 
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2 4 2 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

There has been relatively l itt le investigation of the orientational dependence 
of interfacial properties in solid-fluid model systems because of the tremendous 
computational requirements of traditional approaches. Because of these l imi ta 
tions only the hard-sphere system has been investigated using density-functional 
techniques. One may expect a priori, l i tt le orientational dependence of the inter-
facial tension in this system because of its entropy dominated, high temperature 
nature [58]. It is clear from previous studies [17 ,59-61] however, that there is 
l itt le consensus on the variation of the interfacial tension wi th orientation as well 
as its absolute magnitude, properties that both strongly influence the equilib
r ium crystal structure. For comparison to these theoretical predictions the only 
simulation study available is the molecular dynamics investigation of Broughton 
and Gi lmer [62] who studied the interfacial free energy in the Lennard-Jones 
system and found that the crystal-melt interface at the triple point is nearly 
isotropic. 

From the work of Wulff we know that the relative values of the interfacial 
tension determine the crystal shape, including facet size and stability. Ideally, 
to determine the hard-sphere equil ibrium crystal shape one would calculate η(Θ) 
at al l interaction strengths r . This would allow determination of both the state 
of faceting and the roughening transition v ia a Wulff-type construction. Unfor
tunately, and despite the reduced dimensionality inherent in our approximation, 
our approach to determining interfacial properties st i l l requires a large compu
tational effort making such a calculation impractical . One can, however, look 
at higher index interfaces and ask the question of their stabil ity as a function 
of r . For example, from a Wulff-type construction we know that the 211 inter
face wi l l be stable (that is, not facet into a combination of 100 and 111 faces) if 
7211 < 0.3887ioo + 0 . 6 7 2 7 m . Similarly for the 311 interface the stability condition 
is 7 3 1 1 < 0 . 6 0 3 7 l o o + 0 . 5 2 2 7 m . 

A d h e s i v e S p h e r e s . As discussed previously, the adhesive-sphere system is a 
convenient model because the attractive strength can be varied from the purely 
repulsive hard-sphere l imit to a potential which includes a deep attractive well. 
The phase behavior in the adhesive-sphere system is a strong function of the 
strength of interaction (see Figure 3) , resulting in a large increase of the inter-
facial tension in the f c c ( l l l ) direction with increasing attraction strength. The 
question however remains: How wi l l the various crystalline orientations influence 
this behavior? 

We begin by first examining the hard-sphere l imit and then gradually increase 
the attractive strength, determining the structure and energy of the resulting 
equil ibrium interfaces. As seen previously for the fee (111) interface,increasing 
the strength of attraction in the system causes the fee 110 and 100 interfaces 
to increase their interfacial free energy and decrease their interfacial thickness. 
Structurally, in fact, these interface becomes sharper (Az/a = 1.95 and ν = 0.33 
at τ = oo, decreasing to Az/a = 1.30 and ν — 0.13 at τ = 1.5). 

There appears to be l itt le dependence on crystalline orientation in this sys
tem; the surface free energies are nearly identical as r is decreased from the 
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16. MARK & G AST Solid-Fluid Interfacial Properties 243 

Table I V : Interfacial tensions 7 for the low and high-index crystal face orien
tations at various adhesive-sphere strengths τ 

τ ll™o*lkT PWDA 2 /211 U /JfeT PWDA 2 
/311 U /kT 

oo 0.70 ±.01 0.70 ± .01 0.70 ± .01 0.70 ± .01 0.70 ± .01 
3 0.79 ± .01 0.80 ± .01 0.79 ± .01 0.80 ± .01 0.80 ± .01 
2 0.91 ± .01 0.92 ± .01 0.92 ± .01 0.91 ± .01 0.91 ± .01 

1.7 1.01 ± .01 1.02 ± .01 1.03 ± .01 0.99 ± .01 1.01 ± .01 
1.5 1.05 ± .01 1.07 ± .01 1.09 ± .01 1.03 ± .01 1.04 ± .01 

hard-sphere l imit but begin to show a small amount of anisotropy under condi
tions of the strongest attractions studied. The origin of this anisotropy remains 
unclear as it does not appear to directly correlate with the surface density p, 
where ριη = 4/y/3a2, ριοο = 2 /α 2 , and ριιο = y/2/a2. One thing to note is that 
the lowest tension corresponds to that interface with the highest surface density 
suggesting the importance of interplanar interactions in determining interfacial 
tension. 

We list in Table I V the values we calculate for both the low and high index 
interfaces where, once again, there is l itt le anisotropy. According to the stability 
condition developed in the previous section, both the higher order 211 and 311 
interfaces are stable under the stengths of attraction studied here, indicating 
that the adhesive sphere crystal structure is nonfaceted. This apparent lack of a 
transition from a spherical to a faceted equil ibrium crystal shape as the attractive 
interactions increases may suggest that the interaction potential must have range 
in order to have a nonroughened, faceted equil ibrium crystal structure. One must 
be careful however not to generalize since we are unable to study attractions 
stronger than those found at τ of 1.5. Returning to the work of Broughton 
& Gi lmer on the Lennard-Jones system, they obtain nearly isotropic values for 
the interfacial free energy at the triple point (T* = 0.617). Equating v i r ia l 
coefficients [63] allows us to approximate an equivalent τ v ia r e q u i v = 1 + 2 /T* , 
giving r e q u i v ~ 0.2, a value significantly lower than that investigated here. 

Summary 

Density-functional theory and the P W D A allow one to examine both the inter
action strength and orientational dependence of solid-fluid interfaces. We have 
investigated the influence of interactions on interfacial properties, including hard 
spheres, adhesive spheres, and the Lennard-Jones system. We have also used the 
adhesive-sphere system to investigate both low and high index surfaces and found 
a small amount of anisotropy in the interfacial tension at the highest attraction 
strengths. We see no direct evidence of faceting in the adhesive-sphere system 
for the conditions investigated here. 
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Chapter 17 

Inhomogeneous Rotational Isomeric State 
Polyethylene and Alkane Systems 

John D. McCoy and Shyamal K. Nath 

Department of Materials and Metallurgical Engineering, New Mexico 
Institute of Mining and Technology, Socorro, NM 87801 

The density functional modeling of Rotational Isomeric State 
(RIS) chains is reviewed. Two cases are considered. First, 
the freezing of polyethylene is investigated, and the melt and 
solid densities at the transition are predicted. New results 
are reported which incorporate the attractive as well as the 
repulsive contribution of the site-site potential. Good 
agreement is found with experimental measurements. 
Second, the structure of a tridecane melt near a hard wall is 
considered. Both the site density profile and the distortion of 
the backbone structure are predicted. Good agreement is 
found with the results of simulation and equation-of-state 
predictions. 

Recently there has been considerable interest in applying density 
functional (DF) methodology to inhomogeneous polymeric systems [1-18]. 
Here we focus on the Chandler-McCoy-Singer (CMS) formulation of 
molecular DF theory [19-21] where bonding constraints are explicitly 
retained in the "ideal" system. In addition, we restrict ourselves to the 
case where the homogeneous liquid state input is included through site-
site correlation functions as opposed to being introduced through the 
equation-of-state. Related work on inhomogeneous polymeric systems is 
reviewed by McMullen [10], Rosenberg [14], and Yethiraj [18]. 

Ubiquitous to all density functional theories is the expression of a free 
energy, usually the grand potential, Ω = -PV, as a functional of the 
inhomogeneous density distribution, p(r) , as well as of more traditional 
variables such as the temperature, T; the volume, V; the chemical 
potential, μ; and the external field, U(r). Since the chemical potential and 
the external field conveniently couple as \|/(r) = μ-UCr), the grand potential 
functional can be denoted as Ω[Τ, V, \|/(r); p(r)j. Of course, because p(r) 
itself is a functional of Τ, V, and \|/(r), only three of the variables in the 
brackets are independent and including p(r) in the expression for Ω 

0097-6156/96/0629-0246$15.00/0 
© 1996 American Chemical Society 
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a p p e a r s to be no m o r e t h a n a c o m p u t a t i o n a l convenience . O n t h e o ther 
h a n d , a n e w f u n c t i o n a l , W [ T , V , \|/(r); p(r)] c a n be c o n s i d e r e d w h i c h i s 
i d e n t i c a l to Ω [ Τ , V , \j/(r); p(r)] except t h a t a l l f o u r v a r i a b l e s a r e 
independent . P h y s i c a l l y , one c a n t h i n k of W [ T , V , \|/(r); p(r)] as t h e g r a n d 
p o t e n t i a l w h e r e c o n s t r a i n t s on t h e d e n s i t y h a v e b e e n i m p o s e d a t e a c h 
p o i n t i n space. B y v i r t u e o f the second l a w , the m i n i m i z a t i o n o f W [ T , V , 
Ψ(Γ); p(r)] w i t h respect to p(r) (or, e q u i v a l e n t l y , the r e m o v a l o f the i n t e r n a l 
c ons t ra in t s ) r e s u l t s i n the g r a n d p o t e n t i a l . T h e p(r) w h i c h m i n i m i z e s the 
f u n c t i o n a l i s t h e e q u i l i b r i u m d e n s i t y pro f i l e a n d i s o f ten t h e q u a n t i t y o f 
p r i n c i p l e in teres t . 

I n a n d of i t s e l f t h i s "free energy" route to finding the proper t i es o f a n 
inhomogeneous s y s t e m is exact ; however , a p p r o x i m a t i o n s are necessary i n 
order to generate a n e x p l i c i t f o r m of W [ T , V , \|/(r); p(r)] w h i c h c a n t h e n be 
m i n i m i z e d . T h e a p p r o x i m a t i o n s cons idered here r e s u l t f r o m t h e T a y l o r 
e x p a n s i o n ( i n p(r)) o f t h e excess H e l m h o l t z free e n e r g y a b o u t t h e 
homogeneous l i q u i d (wh i ch h a s the same T , V , a n d μ as the inhomogeneous 
s y s t e m , b u t w i t h U ( r ) = 0). B y c o n v e n t i o n , t h e "excess free energy " i s 
d e f i n e d as t h e free energy i n excess o f t h a t o f a n e x a c t l y s o l v a b l e , or 
" i d e a l " , s y s t e m . F o r atomic sys tems , the i d e a l s y s t e m u s e d i s t h a t of n o n -
i n t e r a c t i n g a toms w h i c h leads to the i d e a l - m i x t u r e - l i k e c o n t r i b u t i o n to t h e 
free energy of Jdr p(r) ln[p(r)]. 

F o r p o l y m e r i c s y s t e m s , t h e s e l e c t i o n o f a n i d e a l s y s t e m i s l e s s 
s t r a i g h t f o r w a r d t h a n i n t h e a t o m i c case . A l t h o u g h p h y s i c a l l y 
u n a p p e a l i n g , i t i s m a t h e m a t i c a l l y t e m p t i n g to use a n i d e a l s y s t e m of n o n -
i n t e r a c t i n g sites. T h i s i s a n except iona l ly poor choice s ince the e n t r o p y of 
m i x i n g i m p l i c i t i n the r e s u l t i n g Σ Jdr pi(r) ln[pi(r)] c o n t r i b u t i o n to the free 
e n e r g y i s f a r too l a r g e to be r e p r e s e n t a t i v e o f t h e p o l y m e r i c s y s t e m , 
l e a v i n g a large correct ion for the excess free energy. Indeed , from a F l o r y -
H u g g i n s v i e w p o i n t , t h i s c o n t r i b u t i o n i s about Ν t i m e s too large w h e r e Ν i s 
t h e n u m b e r of s i tes i n a c h a i n . S i m p l i f y i n g a p p r o x i m a t i o n s b a s e d o n t h i s 
i d e a h a v e been developed [22], a n d appear to w o r k w e l l . 

V a s t l y be t te r are i d e a l sys tems of n o n - i n t e r a c t i n g chains. T h e o n l y 
s u b t l e t y concerns the role of l o n g r a n g e d in te rac t i ons be tween s i tes o n the 
s a m e c h a i n . B e c a u s e we h a v e been s t u d y i n g p o l y m e r m e l t s , w e h a v e , so 
f a r , a s s u m e d t h a t the l o n g r a n g e d in te rac t i ons are screened out b y v i r t u e 
o f t h e F l o r y i d e a l i t y h y p o t h e s i s , a n d , c onsequent ly , w e h a v e neg le c ted 
s u c h i n t e r a c t i o n s i n o u r i d e a l systems. I n those cases w h e r e w e h a v e been 
a b l e to c o m p a r e to s i n g l e c h a i n s t r u c t u r e s g e n e r a t e d b y f u l l c o m p u t e r 
s i m u l a t i o n s , w e find t h a t t h e p r e d i c t i o n s o f d e n s i t y f u n c t i o n a l t h e o r y 
b a s e d on s u c h a n i d e a l s y s t e m are e i t h e r accurate to w i t h i n the e r ro r -bars 
of t h e s i m u l a t i o n or are m o r e s t r o n g l y i n f l u e n c e d b y e r rors i n t r o d u c e d b y 
o t h e r s i m p l i f y i n g a s s u m p t i o n s . I f one w e r e i n t e r e s t e d i n p o l y m e r s i n 
so lu t i ons w h e r e the l o n g r a n g e d exc luded v o l u m e forces are not screened , 
b e t t e r r e s u l t s w o u l d be a c h i e v e d b y r e t a i n i n g these i n t e r a c t i o n s i n t h e 
i d e a l s y s t e m . 

T h e s t r u c t u r a l consequences of s u c h a D F t h e o r y c a n be v i e w e d as a 
b a l a n c e b e t w e e n s i n g l e - c h a i n a n d m a n y - b o d y c o n t r i b u t i o n s to t h e free 
energy . T h e s i n g l e - c h a i n c o n t r i b u t i o n c o n t a i n s b o t h a c enter - o f -mass , 
F l o r y - H u g g i n s - l i k e , i d e a l - m i x i n g component , a n d a n e n t r o p y o f c h a i n 
c o n f o r m a t i o n component . F o r a tomic s y s t e m s , the p l n p a n d t h e m a n y -
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body terms balance to give reasonably good results in some cases (hard 
sphere and Lennard-Jones systems) and poor results in others (repulsive 
l/rn potentials and the liquid-gas transition). 

For polymeric systems, the balance shifts to be between the chain 
conformation and the many-body terms. Consequently, conclusions 
concerning the accuracy or inaccuracy of a polymeric DF theory based 
upon atomic system results can be tentative at best. Polymers differ 
qualitatively from atoms, and, while we do not expect the simple form we 
adopt for the many-body contribution to the DF theory to be accurate for 
all polymeric applications, for the cases we have investigated, the theory 
has produced excellent results. On the other hand, our recent 
investigations [23] of systems with non-negligible attractive interactions 
indicate that a delicate balance exists between attractions and repulsions, 
and, consequently, care must be taken in the application of DF theory to 
such systems. 

System Model. 

In the series of studies reviewed here [1-4], the intrachain interactions 
were described by the Rotational Isomeric State (RIS) model. In the 
freezing studies [1,2], polyethylene in the long chain limit was modeled, 
and, in the wall / polymer studies [3,4], tridecane was modeled between 
smooth, hard walls which were adequately separated so that bulk 
behavior occurred in the center of the slit. In both cases, the RIS 
parameters were as in Flory [24]. The gauche-trans energy was 
500cal/mole, the "pentane-effect" was enforced with an additional 
2000cal/mole for adjacent gauche bonds of opposite handedness. The C-C-
C bond angle is 112°; the gauche states are located at 120° from the trans 
state; the carbon-carbon bond length is 1.54Â. The temperature was 300K 
for the wall studies and, for the freezing studies, a range of temperatures 
centered about 430 Κ was investigated. 

Since very few theoretical or simulation studies have been performed 
on RIS chains, conducting benchmark studies for the DF theory of such 
chains is difficult. We have compared the predictions of our studies to 
experimental results [25,26] for the freezing of polyethylene, and, for the 
wall studies, to the results of both Monte Carlo simulation [27] and 
Generalized Flory Dimer (GFD) theory [28-30]. 

The primary reason for these comparisons was to test the DF theory 
itself. Since the theoretical predictions depend upon both the DF theory 
and the liquid state information which is required by DF theory as input, 
efforts were made to ensure the accuracy of the homogeneous liquid state 
information. 

Polymer reference interaction site model (PRISM) [32-36] liquid state 
theory was used to generate this input. PRISM is accurate in predicting 
chain structure from site-site potentials; however, comparisons with DF 
theory when there is an uncertainty in the interaction potentials, as is 
always the case with experiential data, require the agreement between 
PRISM predictions and the experimental values of selected liquid state 
properties. Only properties associated with the homogeneous phase are 
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used in the selection of an interaction potential: the properties of the 
inhomogeneous system are predicted by the DF theory. 

The interchain interactions are chosen to keep the number of 
parameters to a minimum. In the bulk of the work, the sites were 
modeled as united atom, hard spheres where the interaction potential for 
separations greater than the site diameter is zero and, for smaller 
separations, is infinité. The single parameter of the model - the site 
diameter - was varied in order to describe the different systems studied. 
Attractions, when used, were included in the DF theory by perturbation 
techniques. 

For the comparison with freezing, the hard site diameter is selected to 
agree with experimental measurements [31] on the polymer melt. By 
choosing the hard site diameter to be 3.90A, there is excellent agreement 
between PRISM and X-ray scattering results for polyethylene at the 
experimental temperature of 430 Κ [31]. In addition, this value of 3.90Â 
can also be motivated through excluded volume arguments. Interestingly, 
a diameter of about 3.75Â is required to describe the structure factor of 
alkane melts at room temperature. 

Recently [37], we have revisited the freezing problem. Our new 
evaluation is based upon a Lennard-Jonés site-site interaction potential 

where the ε = 45.4 Κ and σ= 4.423 Â. This potential was found by 
requiring that the compressibility of polyethylene be described by PRISM 
theory over a range of temperatures [38]. At 430K, this potential gives a 
hard site diameter of 3.99Â which, while larger than the value found from 
a comparison with X-ray results, is not unreasonably so. 

For the comparison of the predictions of the DF theory of melts near a 
wall with those of simulation and GFD theory [28-30], a number of 
different hard site diameters were used. The potential used in the 
simulation [39] implies that a diameter of about 3.39 Â should be used. 
Other potentials (such as the Ryckaert and Bellemans [40] potential) 
suggest that a diameter of about 3.73 Â would be more representative of 
true tridecane and, as mentioned above, a similar value of the site 
diameter permits PRISM theory to predict the X-ray structure factor in 
alkanes. Finally, a diameter of zero is considered for comparative 
purposes. The number density of the bulk melt (which is in equilibrium 
with the inhomogeneous melt near the wall) was held fixed at the 
experimental (and simulation) value corresponding to 0.750 kg/m 3. 

(2.1) 

Theory. 

We approximate the excess Helmholtz free energy by a Taylor expansion 
in the density distribution p(r) about the homogeneous state [19-21]. A 
Legendre transform results in the grand potential functional 
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AW = J dr[i|/L - ψ(p)] p(r) + Jdr[x|/°(r) - ψ· ] p(r) 

- ^ J d r A p ( r ) - | j Jdr ' dr c(|r' - r|)Ap(r>p(r) 
(3.1) 

where AW = W - W L ; Ap(r) = p(r) - p L ; " L " refers to the homogeneous liquid 
state; "o" refers to the ideal system which has the same density profile as 
the fully interacting system; and c(r) is the direct correlation function in 
the homogeneous liquid. A l l energies are in units of k T where k is the 
Boltzmann constant and Τ is the temperature. The ideal field \|/°(r) is 
related to the density by 

where S(r^,...,rj^) is the Ν body correlation function for an ideal chain and 
Ν is the number of sites in the chain. 

Unlike the atomic case, the ideal field cannot, in general, be removed 
from the expression for the grand potential functional: the minimization 
procedure must take into account that the ideal field is a functional of p(r). 
Formally, this can be done with the method of undetermined multipliers 
where p(r) and Ψ°(Γ) are treated as independent functions and equation 
(3.2), as the constraint. The resulting formalism is cumbersome; however, 
matters can be improved somewhat by combining equations (3.1) and (3.2) 
as 

The undetermined multiplier can now be taken to be zero since the 
constraint is enforced through setting the derivative with respect to V|/°(r) 
to zero. Unfortunately, the resulting conditions 

Σ ψ ^ ψ ε , , · . . , ^ (3.2) 

AW = Jdr[i|/ L - Ψ(Γ)] p(r) + Jdr[ V °(r) - y«L] p(r) 

- J . . . J d r ^ . d r , , e x p ^ ^ r ^ r . ! r N ) + J d r p L 

- | / / ά Γ · ά Γ θ ( | Γ ; - Γ | ) Δ ρ ( Γ : ) Δ ρ ( Γ ) . 

(3.3) 

δρ(ϊ) 
= 0 

(3.4) 

represent a saddle point in p(r) - Ψ°(Γ) space which is more difficult to 
treat numerically than a minimum would be. The introduction of such 
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1 7 . McCOY & ΝΑΤΉ RIS Polyethylene & Alkane Systems 251 

auxiliary thermodynamic variables is discussed in more detail by Perçus 
[ 4 1 ] . 

The density and the ideal field can be solved for on the differential 
level, and their values used to evaluate the free energy difference in 
equation ( 3 . 1 ) . The maximization with respect to \|/°(r) results in the 
constraint equation ( 3 . 2 ) . The minimization with respect to p(r) yields 

Ψ°(Γ) = ψ(ΐ) - i|/L + ψ° + J d r c(|r - r'|)Ap(r:) ( 3 . 5 ) 

or 

U°(r) = U(r) - J d r c(|r - rj)Ap(r;) + constant ( 3 . 6 ) 

where the chemical potential has been removed from the "fields". B y 
straightforward analogy with liquid state theory, this is a Hypernetted 
Chain (HNC) type of relationship, and, still by analogy, a Percus-Yevick 
(PY) type field can be proposed as well [ 4 2 ] . Given p(r), the external ideal 
field is easily found through equation ( 3 . 6 ) ; however, finding p(r) given the 
field (for a self-consistent solution) through equation ( 3 . 2 ) is not 
straightforward. Because of this, the partial minimization of the free 
energy functional is appealing in cases such as freezing where great 
simplification results. 

By rewriting equation ( 3 . 2 ) as 

Ν 
p(l) = (constant)^ J . . . j d r 1 . . . d r i _ 1 d r i + 1 . . . d r N exp 

i=l 

it is clear that, as one might expect, the density is related to the external 
field by a Boltzmann weighted average of a single chain over all space 
where S(ri,...,r_N) enforces the bonding constraints. The constant can be 
determined by a single condition on the inhomogeneous density such as 
requiring the average density to have a particular value. 

The implementation of D F theory was different in the two classes of 
problems we have considered. In the work on the freezing of (RIS) chains 
[ 1 , 2 ] , the ideal fields were parameterized so that a (constrained) 
minimization with respect to density was simple. The field for the ideal 
liquid, ψ \ , can be expressed (from equation ( 3 . 2 ) ) in terms of the partition 
function, Z L , of a single, unconstrained, ideal chain; 

where V is the volume. Since, for long chains, In [Zj/V] is proportional to 
the chain length, ψ \ will contribute in that limit. For the crystal, only a 
restricted class of ideal fields were considered. The field i|/°(r) is required 
to be of a finite value, ψ°, within small spherical volumes centered about 

j •(rj)ls(r1>...,rM) (3.7) 
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the set of points {R}; otherwise, it is taken to be infinite. The points are 
selected so that the chains must be in an all-trans configuration and, for 
long, RIS chains, the volumes can be, in effect, shrunk to points. The 
resulting expression for ψ° is, to good approximation, 

where the single chain entropy has been set to zero. The simplicity of this 
relationship is a peculiarity of the RIS model. Rigid rotations of the entire 
chain, which are unimportant for long chains, have been neglected. 

The above relationships are more easily understood if the polymers 
are viewed as molecules rather than collections of sites. The net field felt 
by a chain is Νψ° ( or N\|/°L ) and the molecular densities are p m (r) = 
p(r)/N and Pm,L = P L / N . Consequently, the difference in "molecular" fields 
would be 

This is reasonable: in addition to the center of mass contribution familiar 
from atomic DF theories, there is also a contribution from the loss of 
"single chain entropy" in going from disordered liquid chains to the low 
entropy, all-trans chains of the crystal. As the chains become large, the 
center of mass entropy, ln[ Pm(r)/pm,L ]> becomes of secondary importance 
to the single chain entropy, rn[Zi/V] because of the latter's proportionality 
to the chain length. The (constrained) minimization procedure is, simply, 
to vary the locations of the non-infinite values of the \|/°(r) or, equivalently, 
to vary the lattice parameters. 

Finding the density distribution of RIS chains near a wall required 
the full solution of equation (3.7). This was done as follows. A simple step 
function density profile was guessed. The field was calculated through 
equation (3.6) from this p(r). A new density profile was then found 
through a Monte Carlo simulation of a single chain in this external field. 
The resulting density, p(r), was multiplied by a factor which forced the 
density far from the wall to be the bulk density. The new and old density 
profiles were "mixed", a new field calculated, and the procedure repeated 
until convergence was achieved. 

Freezing. 

As discussed above, for the freezing of polyethylene [1,2], the RIS model 
permits simplification of equation (3.1). In the crystal, the chains are fully 
extended and, since the torsional vibrations about the trans state are non
existent in the RIS model, it can be assumed that the sites in an infinitely 
long chain in the crystalline state are localized. In the long chain limit, 
equation (3.1) becomes 

(3.9) 

(3.10) 
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AW = J d r In λ p(r) - - J / d r ] dr c(|r' - r|)Ap(r')Ap(r) (4.1) 

where λ is related to the single chain partition function in the liquid, Z L , 
by 

Z L = λ Ν " χ ν (4.2) 

and is well known for the RIS chain [24]. In Fourier space, equation (4.1) 
becomes 

! ΐηλ-ο(0) ν κ ' K W - -
PL P. 2 

(4.3) 
£c(|R|)-p ec(0) 

L R 

where p s is the bulk density in the solid, 6(0) is the Fourier transform of 
the direct correlation function evaluated at k=0, and the sum is over all 
lattice spacings of separations less than one hard site diameter. The 
crystal density, p(r), has been treated as a collection of delta functions. 
This treatment of the density (and, consequently, equation (4.3)) is only 
appropriate for the RIS model in the long chain limit where there is no 
vibration about the trans state and where the center-of-mass entropy is 
overwhelmed by the single chain entropy. 

It is worth emphasizing that the reduction in entropy associated with 
freezing in polyethylene is one of reduced backbone rather than spatial 
disorder. Because of this, the freezing transition is sensitive to the type of 
backbone used to describe the polymer. Gaussian chains, for instance, 
have, on a per site basis, a large amount of entropy in the melt. This 
entropy is so large that the packing effects which are adequate to stabilize 
the extended chain structure in RIS chains cannot, in the Gaussian case, 
compensate for the entropy loss upon freezing. 

In earlier work [1,2] on the freezing of polyethylene, the interaction 
between sites was taken to be hard in nature. Consequently, the density 
of the crystal was the close packed density. This is higher than seen 
experimentally. O n the other hand, the liquid coexistence density was 
found to be close to the experimental value of 0.78 g/cc. B y using an 
empirical equation-of-state along with the density functional results, the 
melting temperature was found to be 427 Κ which is in good agreement 
with the accepted range of 415 - 420 K. 

The main physical feature which is neglected in the hard site model of 
polymer freezing is, one expects, the attractive well. In order to include 
this feature in the formalism, an attractive potential based upon a P R I S M 
description of the melt should be used. Recently [38], we have used 
P R I S M theory to calculate the isothermal compressibility and adjusted 
the site-site interaction potential so that this quantity is well described 
over a range of temperatures. 
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The attractive component of the potential is introduced through 
perturbation theory. We divide the grand potential functional AW[p(r)] 
into two parts: the first is the grand potential functional due to the hard 
sphere reference potential, AWd, and the second is the contribution from 
the long range attractive perturbation <|>(r). Taking only the first order 
term in the perturbation theory and approximating the radial distribution 
function of the hard sphere system outside one hard sphere diameter as 
unity, the functional AW[p(r)] is, 

The density functional of this form was first introduced by Sullivan [43,44] 
to study a variety of interfacial phenomena, and later used by Curtin and 
Ashcroft [45] to predict the freezing of Lennard-Jones atoms from a hard 
sphere reference system. In this formulation of the perturbation theory, 
the additional contribution to the hard site grand potential (equation (4.3)) 
is, 

where <j>(0) is the Fourier transform of Φ(Γ) evaluated at k = 0. 
As seen in Table I, both the solid and liquid coexistence densities are 

seen to be in good agreement with experimental results. 

Table I. Crystallization of Polyethylene at Atmospheric Pressure 

AW[p(r)] = A W j p ( ^ (4.4) 

A W ; ; r t = J J d 5 d ^ ( l r - d)AP(r)Ap(r:) 

(4.5) 

Liquid 
density 
(g/cm3) 

Solid 
density 
(g/cm3) 

lattice parameters 
a b 
(À) (À) 

Experiment 0.7834a 0.9673a 7.706b 4.936b 

DF theory 
Hard Sites 
L - J Sites 

0.778 
0.80 

1.13 
0.9504 

7.61 
7.79 

4.25 
4.92 

a. reference 54. 
b. reference 55. 
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Near a Wall. 

The structure of polymeric systems near a hard wall is determined largely 
by a balance between two competing entropie contributions. A chain 
which is near the wall has fewer available conformations than a chain far 
from the wall: a depletion of the chains in the wall region is favored. On 
the other hand, as in the case of atomic hard sphere liquids, high packing 
fractions result in an enhancement of the density near the wall since 
effective occupation of space is the primary consideration. In figure 1, this 
interplay of conformational and packing entropies can be seen [3,4]. At 
low packing fractions (d=0), there is a large density depletion near the 
wall. As the packing fraction is increased, the emerging dominance of the 
packing entropy is evidenced by the increase of the density near the wall. 
Interestingly, a short ranged depletion region remains even at high 
packing fraction. 

Because the chains were explicitly simulated [3,4], more detailed 
information concerning the chain structure, the distribution of site type, 
etc. can be obtained. Chains near the wall are seen to stretch a small 
amount. For example, the average end-to-end separation increases in the 
wall region by about 6% for a chain with a site diameter of 3.39 Â. The DF 
prediction for this quantity is in good agreement with simulation results. 
In addition, this suggests that the use of an ideal system with random 
walk scaling is reasonable - at least for alkanes. 

Also in agreement with simulation results is the distribution of site 
types. At low densities, the chain ends strongly segregate towards the 
wall since they are less entropicly repelled by the wall than a center site 
would be. However, as the packing fraction is increased, this effect is 
diminished. 

The short ranged depletion region is an intriguing feature of the 
density profile predicted by DF theory. In order to verify the accuracy of 
D F theory in this region, the value of the contact density can be 
independently verified. The contact site density is well known [46-48] to 
be proportional to the pressure. Consequently, the equation-of-state can 
be evaluated from DF theory and compared to GFD theory. This 
comparison is shown in figure 2. We would expect this level of agreement 
to hold for other alkanes and, perhaps, for other models where the ratio of 
bond length to site diameter is about 0.5. In general, one expects the PY 
relation for the ideal field to be more accurate for structural calculations. 
It is difficult to predict how generally applicable this methodology of 
calculating the pressure is; its robustness as attractions are incorporated 
[23] is of particular importance. 

Discussion. 

The application of the CMS formulation of molecular DF theory to hard-
site polymeric systems appears to be more accurate than the atomic 
theory of which it is an extension. In part this is, no doubt, because the 
open crystal structures which are problematic for the atomic theory are 
not of importance in polymeric systems. However, of more relevance is the 
change in the role of the ideal system. This variation is well illustrated by 
the DF theory of freezing of RIS chains. As seen in equation (3.10), for 
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4C Γ 

0 5 10 15 

Figure 1. Density profiles of a 13-mer RIS chain near a hard surface 
with d=0 (dotted curve), d=3.39Â (dashed curve), and d=3.73À (solid 
curve). 

2.5 ι r 

0 1 2 3 4 
d(A) 

Figure 2. Pressure as a function of hard site diameter with 
temperature equal to 300 Κ and the bulk site density equal to 
0.03192 (1/Â 3). The solid curve was obtained from the GFD equation 
of state, while the points are the result of density functional theory. 
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atomic and small molecular systems, the center-of-mass, entropy-of-
mixing term dominates the ideal system contribution to the overall free 
energy. For polymeric systems, on the other hand, the entropy-of-mixing 
term is overwhelmed by the conformational entropy, and, just as in the 
Flory-Huggins theory, the underlying physics of a polymeric system is 
expected to differ from that of an atomic system. Finally, the magnitude 
of the direct correlation function for a polymeric system is an order of 
magnitude smaller than that of the related hard sphere system [1,2]. This 
implies that the functional Taylor series would be more rapidly convergent 
for polymeric systems. In other words, as the chains become more 
polymeric, more of the problem is contained in the single chain 
calculation, and the DF theory becomes more accurate. Indeed, in the 
long chain limit where there is but a single chain, the DF theory becomes 
exact in a trivial manner. 

The DF approach for polymeric systems is closely related to the Kohn-
Sham DF theory [49] for inhomogeneous electronic systems. In both cases 
the ideal field is found from the density profile by an approximate 
relationship (in our case, equation (3.6)), and the density distribution for 
the ideal system is evaluated exactly in the presence of this ideal field. In 
the Kohn-Sham case, the Schrodinger equation is solved for the non-
interacting system while, in the polymer case, the classical density 
(equation (3.7)) is found through a Monte Carlo simulation. 

The structure of the DF approach adopted here is easily confused with 
the self-consistent-field (SCF) theory of Helfand and Tagami [50] since the 
DF theory is generically of the self-consistent-field type. Moreover, DF 
theory in the "string" limit collapses to SCF theory and can be couched in 
the usual propagator language of SCF theory [51]. On the other hand, the 
term "SCF theory" carries with it connotations which do not apply to DF 
theory. First, the ideal field in SCF theory is local in the density. That is, 
the field at a particular point depends only upon the density, the gradient 
of the density, etc. at that particular spatial location. In DF theory, the 
field at a point depends upon, in general, all spatial positions and strongly 
depends upon densities within a site diameter. Second, rather than 
evaluating the density through equation (3.7) or the equivalent, SCF 
theory computes the density distribution from the ideal field in the 
continuum chain limit. In other words, the non-interacting chains are 
treated as quantum particles, and, in effect, the Schrodinger equation is 
solved for the density. Third, except in a very few applications, SCF 
theory requires that the total density at each point in space be a constant. 
Consequently, SCF theory, as applied, is a theory of composition 
fluctuations rather than one of density variations. 

A modified form of SCF theory has recently been explored [52] which 
retained the quantum calculation of the density, but the DF relation for 
the ideal field was used. It captured most of the qualitative features of the 
full DF solution for Gaussian chains near a hard wall. Such good 
agreement between the two methods would not be expected for chain 
models with a number of length scales. 

While simpler models such as freely jointed and Gaussian chains do 
not contain the short wavelength detail that the RIS model does, they are 
of computational convenience. The calculation of the density distribution 
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near a hard, smooth wall is no exception to this. Such simple Markoff 
chains do not require a simulation in order to calculate the density 
distribution from the ideal field, instead, a propagator formalism can be 
implemented [51]. It seems reasonable to expect that the more 
complicated models lacking long-ranged interactions (i.e., RIS chains) will 
be able to be treated with a generalized propagator approach in the spirit 
of Flory's matrix treatment for the average end-to-end separation of a RIS 
chain. 

The site-site pair correlation function, g(r), can also be evaluated from 
DF theory. The external field is taken to be generated by a molecule, and 
the inhomogeneous density is the bulk density times g(r). The pair 
correlation function has been calculated and compared to simulation 
results for hard site diatomics [42]. From DF theory with a simple HNC 
field (equation (3.6)), the contact g(r) was found to be overestimated for 
tangent sites, much as one would expect from the behavior of the HNC 
liquid state theory of hard spheres. In analogy with liquid state theory, a 
PY form of the ideal field functional results in very good values for the 
contact g's. Interestingly, if the sites are highly overlapped (i.e., a bond 
length of half the site diameter which is about what it would be in RIS 
polyethylene), then both HNC and PY fields produce contact g's which are 
in good agreement with simulation results. 

The only system in contact with a wall that has been studied in any 
detail with the DF methods discussed here is RIS chains near a smooth, 
hard wall. Both the contact density and the density profile are in good 
agreement with simulation and equation-of-state information. Recent 
results for a tangent site model indicate [53] that the wall contact density 
is overestimated which is in keeping with the results for g(r) at contact for 
a HNC field. 

The hard wall contact density can be used to predict the equation-of-
state. As shown in section 5, the equation-of-state for a 13-site alkane 
melt generated through DF theory is in surprisingly good agreement with 
GFD theory. It is too early to tell how well this route to the equation-of-
state will work over a range of system types. If it is safe to draw general 
conclusions from the g(r) calculations, the PY field would need to be used 
with tangent site models. 

There are a large number of future applications for DF theory to 
polymer problems. A number of these are relatively straightforward 
extensions: softening the wall interaction; calculating the surface tension; 
investigating the behavior of blends near a wall; and finding the density 
distribution in simple confining geometries. More computationally 
intensive applications such as studying surface roughness and tethered 
chains will require the breaking of the x-y symmetry of the ideal field. 
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Chapter 18 

Density Functionals for Polymers at Surfaces 

William E. McMullen 

Department of Chemistry, Texas A & M University, 
College Station, TX 77843-3255 

We derive an expression for the external field necessary to pro
duce an arbitrary monomeric density near a planar surface. T h i s 
result becomes exact i n the l imit of weak external fields. We il-
lustrate the ut i l i ty of the formalism by applying it to a polymer 
blend interacting wi th a surface. Due to monomer-surface cor
relations, the monomer densities decay to the bulk composition 
more slowly than i n previous phenomenological theories of poly
mer adsorption. For our choice of monomer-surface Hami l ton ian , 
we observe only first-order wetting. 

Density functional theories of dense systems often separate important thermo
dynamic potentials into ideal and nonideal contributions. For classical, atomic 
fluids, the division is obvious since the part i t ion functions of noninteracting, 
monatomic species avail themselves to exact analyses. For example, researchers 
customarily define the ideal free energy functional Fid[p] and the interaction free 
energy Φ so that , i n terms of the total free energy F[p] 

The analyt ical expression for Fid[p] (1) 

and the well-known identity 

lead to 

0097-6156/96/0629-0261$15.00/0 
© 1996 American Chemical Society 
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w i t h Λ an atomic length scale, and 

c(l;[p]) = 6*[p)/6p(l). (5) 

T h e combination c ( l ) — βν(1) plays the role of an effective external field acting 
on an ideal gas of atoms. 

Whereas equation 4 hardly solves the atomic density functional problem, 
it does suggest some reasonable schemes (2) for approximating the interaction 
term Φ[p]. Some of these yie ld surprisingly good, mean-field descriptions of 
dense systems. Part of the successes of these theories trace back to equations 
2 and 4 which automatical ly incorporate the ideal , translational free energy of 
atoms into the underlying formalism. Whatever mistakes the theories make 
i n approximating Φ[p], at least they describe ideal gases correcly. Extensions 
of the formalism to complicated polyatomic species like polymer fluids are not 
readily accomplished. Even for an idealized model polymer i n which monomers 
do not interact (e.g., freely jointed chains, Gaussian random walks, continuum 
chains, etc.), the monomeric density does not, i n general, reduce to equation 4 
w i t h c ( l ) = 0. Imagine, for instance, a linear polymer subjected to an external 
field that acts only on monomers at one end of the chain. T h e covalent bonds 
defining the polymer transfer the response of the monomers at that end to a l l 
other monomers. T h i s induces a density variation even i n regions of space where 
the external field does not act. In the language of atomic density functionals, we 
say that from a monomeric point of view, the external field induces a nonlocal 
density response. O n l y i n the l imit that the external field varies imperceptibly 
over the volume occupied by a chain can we propose a simple form for the 
monomer density. In this case, for a chain of Ν monomers that each interact 
w i t h an external field ν (S), 

where we determine the proportionality constant from the chemical potential 
or the average density. 

Generally speaking, the field-density relation for an ideal polymer fluid 
is far more complicated than equation 6, and before attempting to construct 
a density functional for interacting polymers, we must develop methods for 
describing the single-polymer l imi t . A t this stage, density functional theories 
exist for describing weakly perturbed, bulk polymer chains. We wish to extend 
those theories to polymer fluids which, even i n the absence of applied fields, are 
highly inhomogeneous. In the next part of this chapter, we study how i n d i v i d 
ua l chains respond to an external field while i n the presence of a surface. The 
surface makes the problem difficult since it breaks the translational invariance 
of the reference, field-free system. In the absence of a surface, our formalism 
reduces to the problem of single polymers i n bulk and reproduces the exist
ing approaches to translationally invariant polymer fluids (3,4)· O n the other 

p ( l ) oc exp[-JV/?i ; ( l ) ] (6) 
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hand , our formalism is readily adaptable to other inhomogeneous polymeric flu
ids (e.g., polymers near a corrugated boundary or near the surface of a smal l , 
spherical, colloidal particle) whenever we possess sufficient statistical informa
t ion about the field-free problem. We note that many of the most important 
scientific and engineering applications of polymers involve surfaces (5), so a 
pract ical motivation transcending theoretical or mathematical curiosity exists 
for focussing on the planar polymer-surface geometry. The t h i r d section of this 
chapter describes such an application to b inary polymer blends. We show that 
correlations between monomers and a surface result i n a surface composition 
profile that decays to the bulk more slowly than previously predicted. T h i s fea
ture of our results brings density functional theory into better agreement w i t h 
existing experimental studies (6). The last part of this chapter summarizes our 
methodology and results and outlines some of the l imitat ions of the theory. 

Derivation of Ideal Density Functionals 

Consider a fluid composed of noninteracting polymers. We do not discount 
the possibil ity of nonbonded, intramolecular, monomer-monomer interactions 
although the most straightforward applications of our theory w i l l involve simple 
models lacking even those interactions. Besides the usual kinetic- and potential-
energy contributions, the Hami l ton ian includes an external field that acts on 
the monomers. Use μ to denote the chemical potential of a chain. In terms of 
the single-chain density operator 

Ν 

M R ) = ] > > ( R - r i ) , (7) 

the grand part i t ion function reduces to ( 7) 

In Ξ = Ζ (8) 

where 

Z = ^JdrNexp -βΗχ + j d R w ( R ) p i ( R ) , (9) 

H\ is the Hamiton ian of a single chain, Λ—with units of length—results from 
integrations over the monomer momenta, and w = — βν. 

H\ contains all interactions of the chain w i t h the surface and any i n 
tramolecular interactions. We seek a relation expressing external field w(r) 
i n terms of the average density given by 
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this result following from equations 7-9. Ant i c ipat ing that equation 10 w i l l 
reduce to equation 6 when the field varies slowly, we express the density as 

= / * * e - ' * e x p [ | < M r ) p i (')] ^ ( 1 ) (11) 

J drNe-^p1(l)exPy drp1(r) [w(r) - «;(!)]} . 

W h e n w does not vary over the volume of the polymer, the second line indeed 
simplifies to equation 6. More generally, we ask: How does the presence of a 
slowly varying field alter the form of equation 6? Ult imately , the answer to 
this question w i l l enable us to approximately invert the field-density relation i n 
order that we can address the problem of determining the external field that 
leads to a particular density profile. 

We expand the second line of equation 11 as 

oo 

η 

χ H M R < ) - w(i)lMRi) 
t = l 

= e » » ( » j p o ( l ) + ζ / d2 -, d(n + 1 } ^ ι ( 1 , ^ • , n + 1) 

χ Π Μ ϋ ΐ ) ^ ( ΐ ) ] 
n = l J 

i n which po(l ) is the density i n the absence of the field w ( l ) , and the 
< / n ( l , . . . , n) 's are monomer-monomer distr ibution functions. T h e passage from 
the first to second equalities of equation 12 defines the distr ibut ion functions. 
O u r goal i n this analysis is to invert equation 12 and determine w(l) as a 
functional of p(l). For a translationally invariant, reference state (the refer
ence state corresponds to the case w(l) = 0), one can accomplish this when 
w varies slowly by using iteration and a gradient expansion. T h i s method (4) 
assumes that V p ( l ) and Vw vary over similar length scales. However, near 
a surface, po( l )—the field-free monomer density—changes sensibly over length 
scales comparable to a radius of gyration. U p o n turning on the field w ( l ) , the 
reference and perturbed densities w i l l likely vary over s imilar length scales even 
i f w(l) varies continuously and much more slowly than Po(\). It follows that 
simple iteration w i l l not facilitate the inversion of equation 12. 

Consider, however, the quantity \np(\)/po{l) which vanishes i n the absence 
of an imposed field, is constant for w(l) —• constant, and changes slowly i n space 
when w(\) varies slowly. Now cast equation 12 i n the form 
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i n ^ = r ( i ) + i n { i + ë / r f 2 ^ i i ( n + i ) 

x ] ] [ y ( i + i ) - y ( i ) ] J 

ftw+i(l,....,n + 1) 

η 
(13) 

where Y — N w and 

To simplify the notation a l i tt le further, we define 

A t this stage, we specialize our analysis to a planar surface and a field that varies 
only i n the direction perpendicular to the surface. The system is translationally 
invariant i n the directions parallel to the surface. To effect the field-density 
inversion, we postulate 

y (,) = P(z) + Λ W f + Λ W g + Λ W ( f ) ' + · · · (ΐβ) 

where fi(z), /^(z) , and fz(z) etc. vary on a length scale £ s comparable to 
a radius of gyration whereas we imagine that P(z) varies on a length scale 
ζρ » ξ3. These properties follow from the fact that / i , / 2 , / 3 , etc. are related 
to correlations of the monomers w i th the wal l for the zeroth-order problem. 
These correlations decay over distances comparable to the radius of gyration 
RG- O n the other hand, we expect that P ( z ) w i l l vary slowly for weak external 
fields. Equat ion 16 contains terms of order ξ~2 and larger. 

T h e results of the present section hinge on the existence of the expan
sion given i n equation 16. The ult imate justification for this assumption can 
be found i n reference (7) which presents more details of the analysis and an 
independent derivation of the functional dependence of Y on p. Subst i tut ing 
equation 16 into 13 and using 

d n Y _ ( ç . , d n P , d»h dP . d n ~ l h ( P P , d n f 2 d ? P 

dz? ~ ^ n l + d n 2 ) d z ? + <fe» dzx
 + n d z r 1 dz\ + cfc? dz\ 

(17) 

and 

n = l 1 

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n 
O

ct
ob

er
 9

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 5
, 1

99
6 

| d
oi

: 1
0.

10
21

/b
k-

19
96

-0
62

9.
ch

01
8

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 
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we f ind, after considerable analysis, that / i , f2, and fz obey the linear, integral 
equations 

roo Λ Ο Ο 

/ dz2f1(z2)g2(z1,z2) = - / dz2(z2 - 2 1 ) 0 2 ( 2 1 , 2 2 ) , (19a) 
Jo Jo 

roo ^ r°° 

yo dz2[f1(z2)(z2 - ζλ) + f2(z2)]g2(zuz2) = J dz2{z2 - z{f (19b) 

x ^ 2 ( 2 1 , 2 2 ) , 

and 
Λ O O ^ Λ Ο Ο Λ Ο Ο 

J dz2f3(z2)g2(zuz2) = - — J dz2 J dzz(fi(z2) + z2 - zx) (19c) 

X ( / l ( 2 3 ) + 2 3 - ^ ^ ( ^ l , 2 2 , 2 3 ) . 

We outline a numerical procedure for solving equations 19a-c for fx through fz 
i n (7). 

Hav ing determined / 1 , f2, and fz numerically or otherwise, we can solve 
equation 16 to determine P(z) and, through equation 15, the perturbed density 
given an imposed external field. In many approximate theories, the field arises 
self-consistently from the interactions of different types of monomers (8). For 
instance, i n the random-mixing approximation (0), the intrinsic free energy of 
a b inary blend near a surface becomes 

F\PA,PB] = Fâ\pA] + F5[PB) + Χ* Γ dzPA(z)PB(z) (20) 
Jo 

upon invoking the conventional incompressibity assumption 

PA(Z) + PB(Z) = p — constant (21) 

to approximate the long-wavelength effects of short-range, monomer-monomer 
repulsions. In the absence of an external field, the functional derivative of 
equation 20 w i t h respect to either PA{Z) or PB{Z) equals a constant as we have 
disregarded certain inconsequential linear terms i n the expression for F. [The 
linear terms contribute the constant to the derivative. H a d we included the 
linear terms i n F , its derivative would equal zero i n accord w i t h equation 3.] 
T h e n , for a symmetric polymer blend (NA = Ν Β = N)Y 

SpA(z) SpA(z) SpA(z) 

= ψ _ γ ψ ) + χ . ( p _ 2 β Α ( ζ ) ) _ χ = 0 
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where equation 16 gives the functionals Y A and Y#. In equation 22, we can 
interpret Y A as the response of A chains to an effective field. The effective field 
consists of the random-mixing term, λ, and the other single-chain functional 
Υβ. Solving the second-order, nonlinear differential equation of equation 22 
amounts to a self-consistent determination of the field. 

To eliminate λ, we demand that Y A and Υβ vanish i n the bulk. T h i s step 
and the introduction of the volume fraction φ(ζ) = PA(Z)/P transforms equation 
22 into 

PM + + rfM^ + IM (23) 

+2χΝ(φοΰ - φ(ζ)) = 0 

i n which χ = ρχ*, 

φοο denotes φ(ζ —• oo), and φο(ζ) is the density profile of the unperturbed 
blend (i.e., a blend w i t h χ = 0). 

W i t h the solution of the composition profile φ(ζ) from equation 23 i n hand, 
we determine the excess surface free energy 7 from (8). 

= j ~ dz \φ{ζ)ΡΑ{ζ) + (1 - φ(ζ))ΡΒ(ζ) + (tf(z) - tf(z)) φ(ζ) (25) 
Ρ 

x ( ^ ) ' + (/aB(*) " / 2
B W ) (1 - fa)) ( ^ ) ' - χΝ(φ(ζ) - ΦοΰΥ 

In most interfacial density functional theories, expressions for the densities anal 
ogous to equation 23 can be derived from a variational principle on a potential 
related to 7. However, the coupling of the length scales ξ3 and ξρ i n the present 
analysis and our application of the expansion 16 destroys this feature (7,8) of 
the exact theory. In general, we must first solve equation 23 for φ(ζ) and then 
substitute the result into equation 25 to obtain 7. Numerica l analysis of equa
t ion 23 using standard relaxation or shooting methods proceeds readily, so i n 
most instances, this feature of our theory does not pose a problem. 

A n Application to a Binary Melt near a Surface 

We consider an application of the formalism described i n the previous sec
t ion to a symmetric , binary blend and an impenetrable surface. Besides the 
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268 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

random-mix ing and incompressibility approximations described i n Sec. II, we 
approximate chains as continuum, random walks and model the interaction 
of monomers w i t h the surface as a delta-function pseudopotential. For chains 
consisting of Ν statistical segments of average length /, we employ (10) 

m = h £ d T \ ï \ + c [ d T S ^ ( 2 6 ) 

where c parametrizes the surface-monomer interaction. The surface repels 
monomers when c > 0 and tends to adsorb them i f c < 0. A l l monomers 
are confined to the half-space ζ > 0. 

For this model , the correlation functions #2(21 > z2) and gz(*i,z2,zz) follow 
straightforwardly from the solution to the modified diffusion equation (9,10) 

dg(zuz2\r) I2 d2g(z1,z2;r) 
dr 6 dz\ 

subject to the boundary condition (10) 

; * i , z2 > 0 (27) 

dg(zuz2\r) 
dzi zi=0 

6c . x (28) 

The quantity g(z\,z2\r) is the probabil ity that a chain of length τ has one 
end at z\ and the other at z2. Reference (8) describes the derivation of the 
correlation functions. The solution of equation 19a reveals that f\ has a delta-
funtion singularity at the origin so that 

h{z) = ft{z)-R%8{z) (29) 

where we use / J to denote the nonsingular part of f\. For finite c, both f2 

and fz are well behaved near ζ = 0. Subst itut ion of equation 29 for each blend 
component into equation 23 leads to the boundary condition 

dPA(z) dPB{z) 
dz dz 

= 0 at ζ = 0. (30) 

F r o m the definition of PA and PB—equation 15—and a boundary condition 

1 dpp(z) 
po(z) dz 

on the unperturbed densities, we find 
2=0 

12c 
Ρ 

(31) 

άφ 12 
(32) 
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for the perturbed blend. A second boundary condition 

φ(ζ —• oo) — φ{ 'oo (33) 

ensures that φ(ζ) relaxes to its bulk value far from the surface. These two 
boundary conditions and f2, and / 3 as functions of c enable us to solve 
equation 23. 

Numerical ly we observe that the surface correlation functions fi, f2, and 
fz decay to their asymptotic values over a range comparable to RQ—the radius 
of gyration of a single chain. Figure 1 plots these functions for a representative 
value of c — i V 1 / 2 c / J . A l l spatial variations i n the surface correlation functions 
occur w i th in 2RQ of the surface, and f2 and / 3 vary less dramatical ly than 
fi. The simplest density functional theories (11,12) of polymer adsorption 
employ asymptotic values for the surface correlation functions and a boundary 
condition at ζ = 0 derived from an assumed, local surface contribution to the 
free energy. To assess the effects of the surface correlations, we compare, i n 
Figure 2, the composition profiles obtained from 23 and from the older theory. 
Generally speaking, the improved theory predicts profiles that decay to their 
bulk values more slowly than those predicted by the older theory. A l though 
the effect is not pronounced, it accounts, i n part , for a systematic deviation of 
experimentally measured profiles (6) from the simpler density functional theory. 
O u r calculations agree, i n this sense, w i th self-consistent-field studies of polymer 
adsorption (13) where surface correlations also dilate the surface profile. 

Superficially, equation 23 exhibits some rather profound differences from 
analogous density functional theories (11,12) that ignore surface correlations. 
T h i s motivates a brief discussion of the predictions of our theory w i t h regards to 
surface phase transitions. Imagine a binary fluid mixture on its bulk coexistence 
curve so that the bulk fluid consists of only one of the pair of phases. Suppose 
that the surface adsorbs most strongly the phase not present i n bulk. We refer to 
this as the A phase. A t low temperature, the surface fluid consists of droplets 
of A adsorbed to the surface surrounded by the other phase—the Β phase. 
Simple scaling arguments (14) predict that as one follows the coexistence curve 
to higher temperatures, the droplets disappear i n favor of a macroscopically 
thick layer of phase A. The transit ion from droplets to a thick layer occurs at 
the wetting temperature Tw where the relation (14) 

holds between the surface tension JAB of the AB interface, the free energy *ysA 
of the surface-A-phase interface, and the free energy 755 of the surface-5-phase 
interface. 

For our model , the wetting transit ion is always first order. Figure 3 plots 
the adsorption layer thickness (12) 

7SB = ISA + ΊΑΒ (34) 

(35) 
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0.6 

0.4 

0.2 

Fix) 
0 

-0.2 

-0.4 

0 1 2 3 
x 

Figure 1. T h e surface correlation functions / i , / 2 , and fz (denoted by 
F(x)) for c = -0.01. RQ is an ideal-chain radius of gyration and χ = 
Z/(2RG). Sol id curve / i , long-dashed curve / 2 , and short-dashed curve fz. 

0.300 

0.275 

φ(χ) ° · 2 5 0 

0.225 

0.200 

0 1 2 3 4 
Χ 

Figure 2. Composit ion profiles near a planar surface of a blend i n the one-
phase region. χΝ = 2.31 and χ = z/(2Rc)- Sol id curve: Theory of the 
present article using CA = -CJB = -0.025. Dashed curve: Phenomenological 
theory that ignores surface correlations. <£(0) of the dashed curve is chosen 
to equal that of the solid curve. 
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0.8 

0.6 

D 0.4 

0.2 

0 *=•= 
0.20 0.30 

Φοο 
0.40 

Figure 3. Interfacial thickness D, as defined by E q . (35), on the B-nch. 
branch of the coexistence curve, φοο = 0.5 at the bulk cr i t ical point. For 
each plot , CA = - CB- Sol id curve, CA = -0.03; long-dash curve CA — -0.01; 
short-dash curve CA = -0.002. 

versus the composition of the bulk Β φοο for a series of surface-interaction 
parameters CA and CB where Ci = C{Nll2/I. Recal l that φοο —• 0.5 at the bulk 
cr i t ical point. We observe that D always jumps discontinuously to oo for any 
finite value of the surface parameters. Changing the absolute value of the ratio 
\CA/CB\ predictably alters the wetting temperature, but the observation of a 
first-order transit ion does not vary except when φοο —• 0.5 at the bulk cr it ical 
point. 

S u m m a r y and Conclusions 

T h i s article outlines the derivation of an approximate external-field density 
functional for single polymer chains near a surface. T h i s result provides a con
nection between an applied or self-consistent external field and the perturbed 
density. A n application to a binary polymer blend interacting w i t h a surface 
illustrates the ut i l i ty of the formalism. O u r analysis requires the solution of 
a simple, albeit nonlinear, ordinary differential equation for the composition 
profile. T h i s compares to alternative self-consistent-field ( S C F ) theories (9,13) 
that require iterative numerical solutions of a part ia l differential equation. R i g 
orous application of our functional demands that the external or self-consistent 
field varies only slightly over distances comparable to a chain radius of gy
rat ion. In the context of our application to a blend, this requires that CA 
and CB « 1, a condition satisfied whenever wetting occurs near the c r i t i 
cal point or, i n one-phase fluids, near weakly interacting surfaces. We regard 
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our theory as a compromise between accuracy and convenience. Certainly, the 
formalism w i l l lead to significant quantitative errors at surfaces that strongly 
segregate monomers. In weakly segregated systems, though, it represents an 
improvement on phenomenological theories of polymer adsorption without the 
computational overhead of the more accurate S C F methods. We note that the 
phenonomenolgical theories (11,12), i n their present form, do not account for 
surface correlations accurately even i n the weak-segregation l imi t . 

Appl icat ions to other polymer-surface systems also appear feasible. Most of 
the calculational effort goes into determining ^2(^1^2) and gz(zi,z2, z$). Once 
these are available, inversion of the integral equations for fi, f2> and fz proceeds 
readily. T h i s suggests that more sophisticated, even atomistic, models of chains 
could be simulated to obtain g2 and #3. In that case, our formalism would 
enable a description of surface-polymer correlations that dispenses entirely w i th 
the somewhat overly simplified Edwards ' Hami l ton ian . O f course, we cannot 
expect the theory to provide nontr iv ial short-wavelength information about 
such systems beyond that contained i n the unperturbed density and correlation 
functions. 

Returning to our specific application to a blend, we recall that most phe
nomenological theories (11,12) predict second- as well as first-order wetting 
transitions. We suspect that the absence of second-order wetting i n our calcula
tions arises, i n part , from our single-chain-surface Hami l ton ian . Phenomenolog
ical theories of surface adsorption generally assume a more highly parametrized 
surface Hami l ton ian that accounts for b inary- as well as single-monomer i n 
teractions w i t h the surface. Th i s Hami l ton ian can exhibit a m i n i m u m i n the 
surface composition φ(0). W h e n this m i n i m u m coincides w i th the concentra
t ion of one of the bulk phases, the wetting transit ion can become second order. 
T h e Hami l ton ian employed i n our theory contains only a purely repulsive or 
attractive contribution and exhibits no such energy m i n i m u m . However, the 
differential equation 23 for the concentration profile contains surface correla
tions and thus terms that do not appear i n the phenomenological analysis. 
Inspection of equation 23 does not immediately suggest how these can affect 
the wetting transit ion. O u r calculations show that surface correlations p r i 
mar i ly dilate the interfacial profile, but this di lat ion cannot, by itself, induce 
second-order wetting. Future applications of the theory should explore the pa
rameter space of surface Hamiltonians for second-order wetting more carefully. 
We would also hope to advance our treatment of intermonomer interactions 
i n those calculations since collective effects may significantly impact surface 
boundary conditions. 
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Chapter 19 

Weighted Density Approximation for Polymer 
Melts 

Arun Yethiraj 

Theoretical Chemistry Institute and Department of Chemistry, University 
of Wisconsin, 1101 University Avenue, Madison, WI 53706-1396 

This chapter describes a density functional theory for polymer 
melts which combines a weighted density approximation for the ex
cess free energy functional with an exact treatment of the ideal gas 
free energy functional. The theory employs a Monte Carlo simulation 
to calculate the properties of a single chain in an arbitrary external 
field. The bulk fluid properties required in the theory are obtained 
from a generalized Flory equation of state. The theory is found to 
be accurate for the density profiles of semiflexible polymer melts con
fined between flat plates for several densities and molecular stiffnesses. 
The theory is also compared to other theories for nonuniform polymer 
melts. 

In many applications, such as the processing of polymer melts, the behaviour of 
polymer molecules within a few Angstroms of a surface is of critical importance. 
Consequently there have been a number of recent studies devoted to obtaining 
an understanding of polymers near surfaces using l iquid state methods such as 
computer simulation (1-3) integral equations (4), and density functional theories 
(5-11). In this chapter I describe the density functional theory recently proposed 
by Yethiraj and Woodward (10) and compare the predictions of this theory to 
Monte Carlo simulations (12, 13) and to other theories. 

The quantity of primary interest in nonuniform fluids is the density profile 
of the fluid. For simple liquids, the two theoretical approaches that have been em
ployed to calculate the density profile are integral equations and density functional 
theories. Integral equations are based on the growing adsorbent model (14, 15) 
where the equations are solved for a mixture of the fluid and an adsorbent in 
the l imit as the adsorbent species becomes infinitely dilute and infinitely large. 
The fluid density profile is simply related to the adsorbent-fluid pair correlation 

0097-6156/96/0629-0274$15.00/0 
© 1996 American Chemical Society 
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function. Although theories of this nature are in good agreement with simulations 
of hard spheres at a hard wall , they can be in qualitative error when fluid-fluid 
and fluid-wall attractive forces are present (16). In recent years attention has 
largely shifted to density functional theories (17). In density functional theory 
one starts with a free energy functional which gives the free energy of the fluid 
for any given density profile. Minimizat ion of this functional with respect to the 
density profile then gives the equilibrium density profile. This functional is not 
known exactly except for an ideal gas, and approximations must be invoked for 
real fluids. A popular and accurate approach is the weighted density approxima
tion ( W D A ) (18). This chapter is concerned with the extension of the W D A to 
inhomogeneous polymer melts and solutions. 

Both integral equations and density functional theories can be extended 
to nonuniform polymer melts, but there are some complications that arise be
cause of the internal degrees of freedom in polymer molecules. In the case of 
the growing adsorbent approach it is not possible to account for the change in 
the conformations of the molecules in the vicinity of the surface. In the case of 
density functional theory the ideal gas free energy functional, which is t r iv ia l for 
simple liquids, cannot be obtained in a simple form. Therefore, applications of 
density functional theory to polymers either use very crude approximations to the 
ideal gas free energy functional or, as is done in this work, treat the ideal gas free 
energy functional exactly v ia a computer simulation. 

The rest of the chapter is organized as follows. The molecular model is 
described in section 2, the integral equation and density functional theories and 
their implementation are described in section 3, the theoretical predictions are 
compared to computer simulations in section 4, and some conclusions are pre
sented in section 5. 

2 Molecular Model 

The theories are tested by comparing them to exact many chain Monte Carlo 
simulations for a simple model polymer melt. The model chosen is one for which 
many chain simulation data are already available, i.e. a melt of semiflexible hard 
chains confined between two infinite parallel walls. The chains are composed of 
a string of tangent hard spheres of diameter σ. In addition to excluded volume, 
a bending potential is introduced in order to make the chains stiff. This bending 
potential, EB, is given by 

EB = c ( l + cos Θ) (1) 

where Θ is the bond angle between two consecutive bonds, and e is the parameter 
that controls the stiffness of the molecules. If e=0 the molecules are freely-jointed 
and if e=oo the molecules are rods. The intramolecular potential, V , is given by 

V(R) = £ £(1 + cos9j) + Σ, Σ W k i - rs\) + Σ ~ r i - i l ) ( 2 ) 
j=2 t'=3 j = l j=2 
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where r t is the position of the ith bead of the polymer molecule, R denotes the 
position of al l Ν monomers on the polymer molecule, cos 6j = ( r j _ i — r^) · (rj+i — 
r i ) 7 vns{r) = oo if r < σ and zero otherwise, and constrains adjacent beads to 
a fixed separation σ. The external field Φ(Κ) = Σ ϋ ι Φ{*ί), where 

φ(ζ) = uw(z) + uw(H - ζ ) , 
= oo 

1 
= Cm j 1 + c 

0 < ζ < Η σ 

otherwise, 
1 

{l + zjdf {l + z/d)*\ 

(3) 

Θ(ρσ-ζ), (4) 

c = 3 3 / 2 / 2 , d = ρ σ / ( 3 1 / 6 - 1), p=0.5, and θ(χ) = 1 for χ > 0. Most of the results 
presented are for £^=0. A l l the results presented are for H=10. 

3 Density Functional Theory 

In density functional theory, one starts with an expression for the grand free 
energy, Ω, as a functional of the density profile of the fluid. (At equil ibrium 
Ω = — PV where Ρ is the pressure and V is the volume.) If R denotes the positions 
of al l the Ν monomers on a polymer molecule and />M(R) is ^ n e molecular density 
as a function of these positions, then the functional Ω[ΡΜ(R)] gives the value of 
Ω for a given density profile / ?M(R)- A t equil ibrium Ω is stationary with respect 
to changes in the density distribution, i.e. 

= 0, (5) 

and this condition is used to determine both / ?M(R) and the equil ibrium free 
energy. 

The functional Ω is related to the Helmholtz free energy functional, F[PM\, 
v ia a Legendre transform: 

iî[P M(R)] = F[PM(R)} + J [9{R) - μ) /»M(R)dR, (6) 

where μ is the chemical potential and Φ(Κ) is the external field. The functional 
F[PM] is generally expressed as the sum of an ideal (FTD) and excess (FEX) part, 

F[PM(R)] = Fid[pM(R)} + Fex[pM(R)}. (7) 

The ideal functional is known exactly: 

Fid[pM{R)} = kT J dRPM(R) [\nPM(R) - 1] + / dRV(R)pM(R), (8) 

where V(R) describes al l the intramolecular interactions (including bonding and 
long-range excluded volume). 
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In principle, with a judicious choice of Fex[pM], the free energy functional 
can be decomposed as 

F[PM(R)\ = Fid[PM(R)} + F~[p(r ) ] , (9) 

where 
r N 

p(r)= άΚ^δ(τ-η)ρΜ(Κ) (10) 
J 1=1 

is the average density of sites, r , are the positions of the beads ( R = {r t } ) , and TV 
is the number of sites (or beads) on each polymer molecule. In this case, Ftd w i l l 
have the interpretation of being the exact free energy of the ideal chain constrained 
to have a site density p(r). (It can be shown that Ω can be expressed as a unique 
functional of p(r) which is min imal at equil ibrium (6).) 

The excess functional is not known exactly, and two broad classes of ap
proximations have been attempted. In one approach the free energy is expanded 
in a functional series in the density (about some uniform fluid density); the kernels 
of successive terms in the expansion are direct correlation functions of increasing 
order. This is the approach followed by Chandler and coworkers (5) and Sen et al . 
(11) and is described later. The other approach is more phenomenological. Gen
erally, the free energy of the nonuniform fluid is expressed as an integral over al l 
space of the local free energy density of the fluid evaluated at some coarse-grained 
density. This functional incorporates bulk thermodynamics v ia an equation of 
state and fluid correlations v ia the definition of the coarse-grained density. 

3.1 Weighted Density Approximation ( W D A ) 

In this work, an approximate form for Fex[p(r)] is obtained v ia the weighted 
density approximation (18): 

Fex[p(r)} = j P(r)f(p)dv (11) 

where f(p) is the excess (over ideal gas) free energy per site of the bulk hard chain 
fluid evaluated at a site density p. The weighted density is given by 

p(r) = y / , (r ' )u ) (|r-r '|)o?r ' (12) 

where w(r) is the weighting function, and is normalized so that / w(r)dr = 1. In 
this work the simplest choice for w(r) is employed, i.e. 

w(r) = r < σ 
4πσό 

= 0 Γ > σ (13) 

where σ is the diameter of a bead on the chain. The range of the direct cor
relations in the fluid are expected to be of the order of the bead diameter; this 
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approximation sets this range to be identically equal to the bead diameter. The 
function f(p) is obtained from an equation of state as described in reference (10). 

A formal minimization of the grand free energy gives, 

PM(R) = exp [-βν(Κ) + βμ- βΦ(Κ) - βΑ(Κ)} (14) 

where β = l / f c ^ T , and 
SFex 

is the field due to the other molecules. W i t h the approximation embodied in 
equation (9), 

N c pex Ν 
A(R) = Σ = Σ λ ( Γ 0> (16) 

,=ι Μ Γ 0 .=ι 
with 

A(r) = f(p(r)) + Jdr'p(r')w(\r - r '|) / (p(r ' ) ) , (17) 
and / ' = df/dp. Equations (14) and (17) form a set of two equations that must 
be solved simultaneously to obtain the density profile for a fixed value of μ. In 
simulations of polymers the average density in the system rather than μ is normally 
treated as the independent variable. This this is because maintaining a constant 
chemical potential requires the successful insertion of chain molecules, which is 
difficult. In order to compare to simulations, the average density rather than μ is 
fixed in these calculations. 

3.2 Truncated Functional Expansion ( T F E ) 

Recently Sen et a l . (11) have presented a theory that is very similar in spirit to the 
one described above; the only difference is that the excess free energy functional 
is given by, 

F~[p(r)} = J dr'c(\ r - r |; Pi) [p(r) - pb] (18) 
where c(r ' — r ; p&) is the direct correlation of the bulk fluid evaluated at the bulk 
density pi,. This corresponds to a functional expansion of the free energy about 
the uniform fluid truncated after the second order term. This theory suffers from 
some drawbacks which do not plague the weighted density approximation. For 
example, it is thermodynamically inconsistent and does not satisfy the exact wall 
sum rule, β Ρ = p(ζ = 0), where Ρ is the bulk pressure. Furthermore, for a 
uniform fluid it does not satisfy the exact relation 

/ ^ ( p ; ^ , . . . , ^ ^ ^ 1 ' ^ ; ; - " ' ^ 0 (19) 

between direct correlation functions of successive order. However, for alkanes at 
surfaces this theory has been found to be quite accurate, and it is of interest to 
compare it to the weighted density approximation. 
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The bulk fluid direct correlation function required in the T F E theory is ob
tained from the P R I S M (polymer reference interaction site model) integral equa
tion theory (19). This theory relates the intermolecular correlation functions to 
the intramolecular correlation functions via a nonlinear integral equation which is 
given by: 

h{k) = ù{k)c(k)ù(k) + phù{k)c{k)h{k) (20) 
where h(r) is the total correlation function, ù(k) is the single chain structure 
factor, and the carets denote Fourier transforms. Given an expression for ù(k) and 
another closure relation between h(r) and c(r) one can solve the above equation for 
the direct correlation function c(r). In this work the chains are treated as ideal on 
long length scales and ù(k) is calculated from a single chain model where excluded 
volume is ignored for beads separated by three bonds or more. The single chain 
structure factor is calculated exactly for beads separated by one or two bonds (20) 
and approximately using the discrete Koyama distribution for beads separated by 
more than two bonds (21). A n approximate density overlap correction is also 
employed to account for the unphysical intramolecular overlaps present in the 
semiflexible chain model which tends to decrease the effective packing fraction of 
the system. The Perçus-Yevick closure, h(r)=-l for r < σ and c(r) = 0 for r > σ, 
is used to close the P R I S M equation. 

3.3 Integral Equation Theory 

The w a l l - P R I S M theory (4) is an extension of the growing adsorbent model (14, 
15) to polymers. In this case the P R I S M equations are solved for a mixture of 
polymers and spheres in the l imit as the spheres become infinitely dilute and 
infinitely large. The resulting Ornstein-Zernike like equation for the wall-fluid 
correlation functions is 

M * ) = S{k)cw{k) (21) 
where the tilde denote one dimensional Fourier transforms and S(k) is the bulk 
fluid static structure factor obtained by solving the bulk P R I S M equations. The 
density profile is given by p(z) = pt,(l + hw(z)). The above equation is supple
mented with the Perçus-Yevick like closures: hw(z) = —1 for ζ < 0 and ζ > Η 
and cw(z) = 0 for 0 < ζ < Η. The reader is referred to reference (4) for details. 
A n advantage of the integral equation theory is that computational requirements 
are tr iv ia l when compared to the density functional theories. However, the the
ory cannot describe the change in chain conformations near the surface and, like 
the T F E theory, is not thermodynamically consistent. Furthermore, like other 
integral equation theories, it is not expected to be reliable when wall-fluid and 
fluid-fluid attractive interactions are present. 

3.4 Numerical procedure 

The equations that describe the W D A density functional theory are solved v ia 
a Newton-Raphson procedure described in reference (10). Briefly, the region be-

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
01

9

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



280 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

tween the surfaces is divided into a number of bins and the value of the density 
profile in each bin is treated as an independent variable. If there are M bins, then 
there are M simultaneous equations given by 

Ν 

< Σ Φ - * * · ) > = 0 (22) 

where p(zk) is the value of the density at point Zk, and the term in brackets is 
the density profile calculated from the single chain simulation using the fields 
generated using the density profile p(zk). Given a guess for the density profile, 
the next guess is obtained following the standard Newton-Raphson recipe. 

The implementation of the T F E theory has an additional feature not 
present in the implementation of the W D A theory: the bulk density is, in gen
eral, not known. (Recall that only the average density in the cell is fixed in the 
computer simulations.) In this work an iterative procedure is used to obtain the 
bulk density. A value for the bulk density is first guessed, the direct correlation 
function is then obtained using the P R I S M theory (19), and the density profile 
of the confined fluid is calculated using the Newton Raphson procedure described 
above. In all the cases investigated the profile is flat in center of the region be
tween the walls. It is therefore reasonable to assume that the fluid is bulk-l ike 
in this region and use this density as the next guess for the bulk density. The 
procedure is continued unti l convergence (normally 3 or 4 iterations are required). 
The implementation of this theory is therefore about 3 or 4 times more compu
tationally intensive than the W D A theory. The integral equation theory is solved 
v ia a standard Picard iteration procedure (16). 

4 Comparison to Monte Carlo Simulations 

Figure 1 compares the density profiles predicted by the various theories to Monte 
Carlo simulations (13) of hard freely-jointed trimers (e=0) confined between hard 
walls. In these calculations (and simulations) the average volume fraction, 77, in 
the system is fixed. (The position 2 = 0 represents the distance of closest approach 
of the chain sites to the wall.) A t the lower density (77=0.1, see inset) both the 
density functional theories are in excellent agreement with the simulation data. 
The w a l l - P R I S M theory overestimates the value of the density at the surface, 
but for distance greater than about 0.5 σ is also in good agreement with the 
simulations. A t the higher density (77=0.4) differences between the performance of 
the various theories are apparent. The most accurate theory in this case is the wall -
P R I S M theory. The W D A is very accurate at the surface but predicts oscillations 
in the density profile that are slightly out of phase with the simulations. The T F E 
is accurate for distances greater than about 0.5 σ but significantly overestimates 
the value of the density at the surface (by about 30 - 40 %). This suggests that 
the accurate contact values reported by Sen et al . (11) for alkanes at surfaces are 
fortuitous (recall that the theory is not thermodynamically consistent) and not 
expected for al l models of the polymer molecules. 
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The density profiles of semiflexible hard chains at surfaces are governed by 
a competition between packing and configurational entropie effects (1, 12). For 
fully flexible chains, the loss in configurational entropy suffered by a single chains 
promotes a depletion of chain sites near the surface, whereas the packing of the 
molecules against the surface promotes an enhancement of chain sites near the 
surface. As the chains become stiffer, the restrictions on configurational entropy 
increase and this tends to decrease the density close to the wall . O n the other 
hand, the packing effects help align the chain segments parallel to the wall and 
this tends to increase the density close to the wall . The observed density profiles 
are a result of a superposition of these effects. 

Figure 2 and 3 compare theoretical predictions for the density profiles of 
hard 20-mers between hard walls to simulation results (12) for values of e=0 
and 5, respectively. In all cases the agreement between the W D A theory and 
simulation is quite good. In fact it is in better agreement with the simulations 
for 20-mers than it is for trimers. This could be because the single chain entropy 
plays a more important role in long chains, especially stiff chains, and this aspect 
is treated exactly in the density functional theories. A t low densities the W D A 
is more accurate than the T F E in all cases. A t high densities, for e=0 the two 
theories are about equally accurate, the W D A is more accurate near contact and 
the T F E is more accurate slightly further away. For e=5 the W D A appears to 
be more accurate at al l densities. The w a l l - P R I S M theory is in good agreement 
with the simulations for e=0, but for higher stiffnesses it misses even the shape 
of the density profile. It appears that the w a l l - P R I S M theory is accurate when 
the fluid structure is dominated by packing effects; the performance of this theory 
diminishes when single chain entropy effects become important. 

Figure 4 compares the W D A theory to simulations for ew ^ 0 , i.e. a repul
sion or attraction between the walls and the beads is present, for N=20,e=0 and 
77=0.35. A n attractive potential results in a large increase in the density at the 
surface whereas a repulsive wall-fluid potential results in a significant depletion in 
the density at the surface, as expected. Again , the theory is in good agreement 
with the simulations. 

5 Summary and Discussion 

A density functional theory for nonuniform polymer melts is presented which 
combines a single molecule simulation with the weighted density approximation. 
When compared to simulations of semiflexible polymer melts, the theory is found 
to be in good agreement over a range of chain lengths, stiffnesses, and densities. 
The weighted density approximation and the truncated functional expansion the
ories are both quite accurate, although the W D A is a l itt le more accurate in the 
immediate vicinity of the surface (especially for the stiffer chains) while the T F E 
is a l i tt le more accurate at intermediate distances for the shorter chains. The 
integral equation theory is very accurate for freely jointed hard chains. A t l iquid 
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0 . 0 
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I I I I I I ι ι I ι ι ι ι I I 

ζ/σ 
F i g u r e 1. Comparison of theoretical predictions ( W D A : solid, T F E : short 
dashes, w a l l - P R I S M : long-dashes) to Monte Carlo simulations (symbols) for 
the density profile of 3-mers between hard walls (ew = 0) for e=0 and η=0Λ 
and 0.1 (inset). 

ζ/σ 
F i g u r e 2. Comparison of theoretical predictions to Monte Carlo simulations 
for the density profile of 20-mers between hard walls (e ,̂ = 0) for e=0 and 
77=0.1 and 0.2 (inset) and 0.35. See figure 1 for description of symbols and 
lines. 
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0.7 
0.30 

F i g u r e 3. Comparison of theoretical predictions to Monte Carlo simulations 
for the density profile of 20-mers between hard walls (ew = 0) for e=5 and 
77=0.2 (inset) and 0.3. See figure 1 for description of symbols and lines. 

3 .5 
0.6 

I I I I I I I 

F i g u r e 4. Comparison of W D A predictions (lines) to Monte Carlo simulations 
(symbols) for the density profile of hard 20-mers for ew=-2 and ew=2 (inset) 
for e=0 and τ?=0.35. 
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like densities it is more accurate than either of the density functional theories. 
For stiff chains, however, this theory misses the shape of the density profile and 
predicts a significant layering that is absent in the simulations. 

Both the versions of the density functional theory can be improved upon. 
The W D A is easily improved by incorporating information about the pair corre
lations of the bulk fluid into the weighting function. To do this one choose w(r) 
so that the identity 

is automatically satisfied. This results in an integral equation for w(r) given by, 

which can be solved iteratively or directly by assuming the last term is small . A 
similar approximation results in very accurate predictions for the density profiles 
of hard spheres at a hard wall (17). 

A systematic improvement of the T F E is more difficult. The version of 
this theory tested corresponds to a hypernetted-chain style self-consistent field, 
and for the tangent chains of this work better results might be expected with a 
Perçus-Yevick style self-consistent field (9). Like integral equation theories, the 
accuracy of any particular closure relation is only known post facto, and often 
difficult to justify a priori. 
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Chapter 20 

Density-Functional Theory of Quantum 
Freezing and the Helium Isotopes 

Steven W. Rick1, John D. McCoy2, and A. D. J. Haymet3 

1Structural Biochemistry Program, Frederick Biomedical Supercomputing 
Center, National Cancer Institute-Frederick Cancer Research 

and Development Center, Frederick, MD 21702 
2Department of Materials Engineering, New Mexico Institute of Mining 

and Technology, Socorro, NM 87801 
3School of Chemistry, University of Sydney, Sydney, 

New South Wales 2006, Australia 

Over the last fifteen years density functional theory has lead to new understanding 
of many properties of the freezing transition. The essence of the theory is a 
functional Taylor series expansion of the free energy of the solid about that of 
a reference liquid. In the simplest version of the theory, the reference state is 
taken to be the coexisting liquid. The series is typically truncated after second 
order in the density difference between the two phases. In the classical atomic— 
and original—version of the theory, all the information specific to the system 
is contained in the second order expansion coefficient, which is related to pair 
correlation functions of the liquid (1, 2). The theory demonstrated that liquids 
freeze when they are strongly correlated, in agreement with empirical freezing 
rules observed in computer simulations (3, 4). 

An early, successful application of density functional freezing theory was to the 
Lennard-Jones fluid (5). The phase diagram for many of the rare gas elements, 
when plotted in reduced variables obtained by scaling with the Lennard-Jones 
parameters which contain the length and energy scales of the particular element, 
are remarkably similar. For example, the triple points of neon, argon, krypton, 
and xenon al l lie in the same region of phase space. Furthermore, the phase dia
gram for the Lennard-Jones system, calculated both from simulation and density 
functional theory, agrees well with the rare gas data. The exception is hel ium. 
In terms of its scaled variables, helium freezes at a much lower density than the 
more classical rare gases (6). Addit ional ly , the less massive and therefore more 
quantum mechanical isotope, 3 H e , freezes at a lower density than 4 H e . Quantum 
effects are therefore promoting freezing and stablizing the solid phase. O n the 
other hand, quantum effects decrease correlations between particles. Th is last 
fact is problematic for density functional freezing theory, which gets a l l its infor
mation about the system from liquid-state correlation functions. The influence 
of quantum mechanics, if only interparticle correlations are considered, w i l l be to 
increase the freezing density. 

0097-6156/96/0629-0286$15.00/0 
© 1996 American Chemical Society 
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20. RICK ET AL. DFT of Quantum Freezing 287 

Therefore, from these two facts—quantum effects decrease the freezing den
sity and also decrease interparticle correlations—we know a priori that classical 
atomic freezing theory wi l l fail to predict the proper trend among 3 H e , 4 H e and 
the classical l imi t . Recognizing that the free energy Taylor series is an expansion 
of the excess free energy, defined as the difference between the system of interest 
and an ideal system at the same thermodynamic conditions, improvements can 
be made to the theory by choosing a better ideal system. Classically, it suffices 
to choose a set of non-interacting classical particles. For the quantum case, 
then, it is sensible to choose a set of non-interacting quantum particles. This 
choice should make the series more rapidly convergent, hopefully by the second 
order term, which is where we typically truncate. B y using the Feynman path 
integral representation of quantum mechanics, wi th its well-known isomorphism 
between the quantum particle and a ring polymer, the quantum freezing theory 
has many features in common with the density functional theory as applied to 
actual polymers (7). 

Quantum Density Functional Theory of Freezing 

This derivation of the quantum freezing functional follows closely that found in 
Reference 8, which the interested reader should consult for further details. The 
first step in the derivation of the free energy is a functional Taylor series expansion 
of the excess Helmholtz free energy about the l iquid state in powers of the singlet 
density difference, 

where the subscripts S and L refer to the solid and l iquid states, pi is the bulk 
l iquid density, p(r) is the solid singlet density Δ ^ ( Γ ) = p(r) — PL and A0 is the 
free energy of the ideal system. The natural variables of the Helmholtz ensemble 
are the temperature, T , the volume, V , and p. The ideal system has the same 
values of T , V , and p as the interacting system; this means that for the ideal 
system of the solid phase, which has a spatially varying density, an external field 
must be placed on the ideal system to produce the same density. 

In order to study phase coexistence, it is more convenient to use the Grand 
ensemble, which is related to the Helmholtz potential through the Legendre trans
form, 

Ω = Α - | ( Ι Γ Φ ( Γ ) / ) ( Γ ) , (2.2) 

where Ω is the Grand potential, Φ(Γ) = μ —t / ( r ) , μ is the chemical potential , and 
U(r) is an external field. The variables p and Φ are conjugate and the following 
relations hold, 
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288 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

and 

< 2 · 4 ) 

Using Equations (2.2) and (2.3) and defining 

where β-1 = kT, leads to the following functional for the Grand potential free 
energy difference, 

Δ Ω > ( p ) ] = il'-ill 

= A°-A°L + Jv dr [ 9 L - » ( P ) ] P ( P ) - fy dr Ψ°Δ />(Γ) 

- i AT jjv drdv' c(|r - Γ ' | ) Δ Ρ ( Γ ) Δ / , ( Γ ' ) . ( 2 . 6 ) 

Since the natural variables of Ω are Τ , V , and Φ ( Γ ) , the free energy should be 
a functional of these variables only. However, rather than eliminate p(r) in favor 
of these variables, it is more convenient to consider Ω as a functional of T , V , 
Φ ( Γ ) , and p(r) , with an additional condition which fixes the value of p(r). This 
condition is that p(r) is given by the value which minimizes Ω* for fixed T , V , and 
Φ(Γ ) . The asterisk on the Δ Ω * functional denotes that p(r) is a free variable, only 
when the functional is minimized does it equal the the grand potential difference, 
Δ Ω . 

It is now necessary to choose the ideal system. For classical atomic liquids, 
the ideal system is commonly chosen to be classical non-interacting particles. 
For this ideal system, c(r) is the Ornstein-Zernike direct correlation function, 
/>(r)=exp(/?$(r)) and 

βΑ° = jT Arp (p )pn (p (p ) -1 ] . (2.7) 

For a quantum mechanical ideal system, using the Feynman path integral rep
resentation, the singlet density of the ideal non-interacting system is related to 
Φ ° ( Γ ) through 

(
p ν 3(P-l)/2 , , 
ζ) Α · · / * » · · · drP e «VP)i*°(r) + . . . + *o(rr)] 

A 1 ) J JV 
x e-(irP/A 2)[(r-r 2)»+...+(rP-rH ? ( 2.8) 

where λ = (2nrnkT/h2)~1/2, m is the mass of the particle, h is Planck's con
stant, and Ρ is the number of discretizations of the path integral (9, 10). From 
Equations (2.2) and (2.4), 

β A0 = Jydr p (r ) [*° (r ) - 1] . (2.9) 

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n 
O

ct
ob

er
 9

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 5
, 1

99
6 

| d
oi

: 1
0.

10
21

/b
k-

19
96

-0
62

9.
ch

02
0

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



20. RICK ET AL. DFT of Quantum Freezing 289 

For the l iquid phase Φ is a constant and therefore /0£,=βχρ(/?Φ£) just as in he 
classical case. Substituting Equation (2.9) into Equation (2.6) leads to 

/ ? Δ Ω * = PLV + fiJvdr [*L - Φ(Γ) - \npL + *°(p) - l]^(r) 

" \ kT IIv dr dT' C^V
 " ΓΊ)ΜΓ)ΔΡ(Γ') . (2.10) 

As already noted, / ? Δ Ω * is only the free energy difference when minimized with 
respect to /?(r), but now we have the added function, Φ°(Γ) , which cannot be 
eliminated in favor of p(r) because Equation (2.8) cannot be inverted to give 
Φ°(Γ) as a functional of p(r). Therefore, the / ? Δ Ω * from Equation (2.10) is a 
functional of both p(r) and Φ°(Γ). The functional so defined is the actual Grand 
potential free energy difference when 

| ^ = 0 (111) 
dp(r) 

and 
<9/?ΔΩ» 

9Φ°(Γ) 
= 0. (2.12) 

The solution of Equation (2.10) together with Equations (2.11) and (2.12) is a 
difficult computational problem. For this reason it is convenient to parameterize 
the solid density. One common assumption is to assume that the solid singlet 
density is of Gaussian form (and hence spherically symmetric) about each lattice 
site (11-13). This assumption has been tested against exact parameterizations 
for classical systems and is a good approximation for close packed crystals (5). 
The Gaussian approximation for the p(r) is equivalent to assuming that Φ°(Γ) to 
has a following parabolic form in each unit cell 

Φ°(Γ) = a - br2 , (2.13) 

where r is the distance from a lattice site. Put t ing this parameterization of Φ°(Γ) 
into Equation (2.8), leads to this parameterization of the singlet density (9) 

p(r) = ( 2 7 ( C - l ) / x ) 3 / 2
 e - W - i ) r » , (2.14) 

where C=cosh(A(6 /7r ) 1 / 2 ) and 

7 = A s i n h W a / * ) 1 / 2 ) - ( 2 , 1 5 ) 

T h e density is therefore a Gaussian distribution around each lattice site, with α 
determined by normalization of p(r) (a = 31n[2(C — 1 ) / λ 2 ] / 2 ) and b a variational 
parameter. 
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290 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

The double integral in Equation (2.10) is best evaluated by using the periodic 
nature of the density and expanding p(r) in a Fourier series 

AMr) = E^)e t k r . (2.16) 
k 

The Fourier coeficients for the density from Equation (2.14) are given by 

P(k) = { 7s e-*'W-i)) f o I k ^ O ' ( 2 · 1 7 ) 

where ps is the bulk solid density. Then , 

\ JJvdrdr'c(\r-r'\)AP(r)Ap(r') = ± V X>(k)]*c(*), (2-18) 

where c(k) is the Fourier transform of c(r). 
Using Equations (2.13, 2.14 and 2.18) in Equation (2.10) and VL = Φ(Γ) 

(since both phases are to be at the same chemical potential) leads to 

| Δ Ω · Κ Γ ) ] = PL - ps ( l + HPL) - \H2{C - 1) /λ 2 ) + 

- s E W ^ M * ) . (2.19) 
z k 

where we have assumed that p(r) centered on one lattice site does not overlap 
adjacent sites. This equation has the correct classical l i m i t . B y minimiz ing Equa
tion (2.19) with respect to p(r) (which through Equation (2.14) means minimiz ing 
wi th respect to ps and b) for a given crystal symmetry, one obtains the grand 
potential difference between the l iquid and solid phases. One then varies the 
chemical potential of the l iquid by varying PL to find the point where Δ Ω = 0, 
thereby obtaining the phase coexistence point. 

One final point concerns the effect of quantum mechanics on the l iquid cor
relation functions. The correlation function 

is the probability [minus a mean field contribution of p(τ\)p(τ2]\ that a particle 
exists at a position Γι and simultaneously a particle, either the same particle or 
different, exists at Γ2. Χ ( Γ Ι , Γ 2 ) is written as a sum of self and distinct particle 
terms as 

X(n , r 2 ) = 5 ( r l f r 2 ) + /KriMra)Mri .*a) , (2.21) 

where 5 ( r 1 ? r 2 ) is the self-correlation function and Λ(ΓΙ, r 2 ) is the total correlation 
function. In conventional path integral studies, correlation functions are calcu
lated between particles at the same imaginary time. The correlation functions 
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20. RICK ET AL. DFT of Quantum Freezing 291 

in Equation (2.21), however, include correlations between different imaginary 
times as well as the same imaginary time. For l iquid hel ium the total correlation 
function calculated either way are very similar. 

For a classical system, if a particle exists at r i , then that same particle only 
exists at r i , so the self correlation function is proportional to a delta function. 
However, quantum mechanically a particle at r i also may have a finite probability 
of being at r 2 at the same time. For the ideal non-interacting system, 

S°(n, r 2 ) = P L 1 ^ - ± - β ^ - ^ ' . (2.22) 

From Equations (2.3) and ( 2.20), 

where the superscript w - l " indicates the functional inverse, defined by 

* ( r i - r 2 ) = ^ d r 3 x(rur3) x'l(r3,v2). (2.24) 

This equation can be combined with Equation (2.21) to form a quantum mechan
ical Ornstein-Zernike equation. For the l iquid , the direct correlation function 
needed as input into the freezing theory is most easily expressed in Fourier space 
as 

-*-'<<>+§SI' (22s) 

In the classical l i m i t , this definition of c(r) reduces to the usual direct correlation 
function and Equation (2.25) becomes exactly the Ornstein-Zernike equation. 
This result can be thought of as the R I S M integral theory applied to a ring 
polymer l iquid where each ring has an infinite number of sites wi th an infinitesimal 
bond length (14, 15). 

The self-correlation function for interacting systems is in general different than 
S°(r) since interactions compress the extent of quantum dereal izat ion . However, 
5 ( r ) is slow to converge with path discretizations, P , and for this reason it is 
difficult to calculate from simulations. For the results presented in the next 
section, we approximate S(r) as S°(r) (6). Another approximation, involving 
giving the ideal system an effective mass so that S°(r) is equal to an estimated 
S(r). The use of an effective mass leads only to small differences between the 
results using 5 ( r ) = 5° ( r ) , except at temperatures below 50 K e l v i n where the 
use of an effective mass did not lead to freezing solutions. Other input needed for 
the freezing theory, namely the l iquid correlation function, h(r), was calculated 
using path integral Monte Carlo ( P I M C ) simulations, wi th 500 particles and 
P=10' path integral discretizations for temperatures below 21 Κ and P = 3 at 
higher temperatures. The potential used was the Lennard-Jones potential with 
e/fcB=10.22 Κ and σ=2.556Α (16). 
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292 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

T h e F r e e z i n g o f H e l i u m 

Crysta l - l iquid phase points were calculated for 4 H e at temperatures ranging from 
8 to 204.4 K . In Figure 1, those results are compared to the experimental phase 
diagram. Experimentally, the stable crystal is face centered cubic (fee) above 
14.9 Κ and hexagonal close packed (hep) for lower temperatures (18, 17). A t 
temperatures above 290 K , there is evidence that the fluid again freezes into 
an hep crystal (22). The theory predicts fee to be stable at al l temperatures 
studied, even at 8 K . For quantum and well as classical systems, the resolution of 
the free energy differences between these two close packed crystals is a difficult 
problem. Otherwise, the agreement is very good. The predicted solid density 
is overestimated, this also tends to be the case in the classical theory. The 
solid density is dependent on the l iquid pair correlation function, g(r). Other 
results, using a g(r) not from the Lennard-Jones potential and P I M C simulations 
but from classical pair pseudo-potentials and integral equation theory, predict a 
smaller density change upon freezing (23). 

Phase coexistence points were calculated for 3 H e as well. The isotopic sub
stitutions provide a means to judge the importance of the things left out of the 
theory, such as particle statistics. For a range of temperatures (20, 102.2 and 
204.4 K ) , the freezing theory predicts that 3 H e freezes at a lower density than 
4 H e , in agreement with experiment. The predicted crystal phase is again found 
to be fee. Experimentally, the stable phase in this temperature range is believed 
to be fee (24)', the fee to hep transition occurs at 17.73 Κ (25). The theory gives 
a difference in the l iquid density at the freezing point between 4 H e and 3 H e of 
0.0011 A " 3 at 20 K , in very good agreement with the experimental value of 0.0009 
Â " 3 (17). Furthermore, at this temperature density functional theory predicts 
that the classical Lennard-Jones fluid freezes at a density of 0.0088 Â " 3 higher 
than 4 H e (5). Therefore, quantum effects stablize the solid phase. 

One interesting feature of the 3 H e and 4 H e phase is the isotopic shift in the 
pressure at the freezing point, P f (Figure 2). A t low temperatures, both the 
theoretical (shown by the filled squares) and the experimental (shown by the 
circles) (17) results indicate that 3 H e freezes at a higher pressure than 4 H e , even 
though it freezes at a lower density. A t higher temperatures, the theory predicts 
the opposite isotopic shift: 3 H e freezes at a lower pressure than 4 H e . The high 
pressure diamond-anvil cell experiments of Loubeyre, et al. , find that (except 
perhaps at 175 K ) 3 H e freezes at a higher pressure than 4 H e (24). Also shown in 
Figure 2 are simulation studies of the isotopic shift (triangles) (26). These results 
are generated using the experimental values of the freezing pressures and densities 
of 4 H e and then using free energy perturbation theory to predict Pp of 3 H e . This 
requires performing P I M C simulations at the two phases of both isotopes. The 
results of Reference 26 used the exp-6 pair potential, similar to the Lennard-Jones 
potential used in the D F T calculations but with the parameters used it has a 
well which is slightly deeper and at larger separations (27). The D F T and the 
simulation results show the same trend for the isotopic shift. The disagreement 
wi th the experimental results is due to deficiencies with the pair potentials. The 
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Figure 1: The 4 H e phase diagram: experimental results for the l iquid-crystal 
coexistence curve (solid line) (17-20) and the gas-liquid coexistence line (dashed 
line) (21), and the D F T results (circles) (6). 

pressures needed to make helium form a solid at temperatures above 150 Κ are in 
the G P a range. A t these pressures, many-body interactions become important. 
Simulations similar to those of Reference 26 but with three-body potential terms 
added perturbatively give results which are in close agreement with experiment 
(the diamond in Figure 2) (28). 

The crystal density profiles are displayed in Figure 3, which compares p(r) 
for hel ium with the classical Lennard-Jones result (the solid line) (5). Quan
t u m effects cause the density to become much broader, even when scaled by the 
nearest neighbor distance, d n n . The 4 H e density at 20 Κ (the dashed line) is 
much broader than the classical result near the same temperature and the 3 H e 
density (the dotted line) is broader s t i l l . In addition, the density gets broader 
as the temperature is lowered (the dot-dashed line). The width of the density is 
customarily measured by the Sutherland(#0)/Lindemann(#0) ratio, which is the 
average root mean square deviation of a particle in the crystal from its lattice 
site, measured in units of d n n , 

" n n IJ peak 

1/2 1 3 1 1/2 

dnn L4 7 ( C - 1 ) 
(2.1) 

For 4 H e and 3 H e at 20 K , L is 0.116 and 0.124, respectively; in the classical 
l imi t at this temperature, L is 0.076 (5). For 4 H e at 8 K , L is 0.145. The 
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Figure 2: Isotopic shift in the pressure at the freezing point, P F , as a function of 
temperature comparing experimental results (circles, the solid line is a polynomial 
fit) (17, 24), simulations using the exp-6 pair potential (triangles and dashed line 
fit) (26), simulations with additional three-body energy terms (diamond) (28), 
and DFT with the Lennard-Jones pair potential (filled squares) (6). 

Figure 3: Crystal singlet density profiles for classical Lennard-Jones particles at 
T=20.44 Κ (solid line) (5), 4He at 20 Κ (dashed line), 3He at 20 Κ (dotted line), 
and 4He at 8 Κ (dot-dashed line), as a function of distance from a lattice site, 
scaled by the nearest neighbor distance, d n n . 

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n 
O

ct
ob

er
 9

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 5
, 1

99
6 

| d
oi

: 1
0.

10
21

/b
k-

19
96

-0
62

9.
ch

02
0

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



20. RICK ET AL. DFT of Quantum Freezing 295 

Suther land/Lindemann empirical rule states that a crystal w i l l melt when L is 
greater than 0.1. This holds for a number of simple crystals but is clearly not 
true for hel ium, for which L can be as large as 0.38 (31). 

In conclusion, we have presented a theory of freezing which successfully ex
tends the classical theory to systems where quantum effects are very large ( 3 He 
and 4 H e ) . Quantum mechanics influences the freezing transition by introducing 
a new length scale, so that the length scale of the system is not determined by 
that of the intermolecular interactions alone, but also by the de Broglie wave
length λ. The quantum freezing theory as given by Equation (2.19) is successful 
because the convolution of S(r) and h(r) that is in the input (Equation (2.25)) 
contains both these length scales. Quantum mechanics increase the length scale 
and lowers the freezing density in part because quantum derea l izat ion causes the 
particles to be larger than the classical l imi t . The isotopic shifts in the freezing 
points are correctly predicted by the theory (see Figure 2), which implies that 
the quantum effects left out of the theory, namely exchange, are not important 
at these temperatures. Exchange could be included in the theory to second order 
through the correlation function, although exchange only effect h(r) at temper
atures below 2 Κ (32). Freezing theories have also been developed for systems 
for which exchange effects are important, including fluids with internal quantum 
states at non-zero temperatures (33) and a variety of systems at zero tempera
ture: electrons (34, 35), quantum hard-spheres (36), and superfluid 4 H e (37, 38). 
For a review see Reference 39. 

A c k n o w l e d g m e n t s : The content of this publication do not necessarily reflect 
the views or policies of the Department of Health and H u m a n Services, nor does 
mention of trade names, commercial products, or organizations imply endorse
ment by the U .S . government. This research was supported in part by N S F Grant 
CHEM-8913006. 
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Chapter 21 

Freezing of Colloidal Simple Fluids 

C. F. Tejero 

Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 
28040 Madrid, Spain 

It is well-known that the Lennard-Jones potential provides a fair description of the 
phase diagram of a simple atomic fluid with a fluid-fluid critical point and a fluid
-fluid-solid triple point. In this chapter we analyze the modifications occurring in 
the phase diagram of a simple fluid when the range of the attractions is reduced. 
We consider two different theoretical approaches based on the Gibbs-Bogoliubov 
inequality in order to evaluate the fluid and solid free energies. It is shown that 
for intermediate attractions the liquid phase disappears and the phase diagram 
only exhibits a fluid-solid transition. A further reduction of the range of the 
attractions leads to a phase diagram with a solid-solid critical point and a fluid
-solid-solid triple point. These phase diagrams could be of relevance to the phase 
behavior of colloidal simple fluids. 

The modern theory of freezing has been formulated within the density functional 
theory of nonuniform phases (1-6). Its application to the freezing of hard spheres 
into perfect crystals gives an accurate description of the stability and the thermo
dynamics of the hard-sphere (HS) solid (6). The extension of the above formalism 
to the freezing of particles interacting with more realistic potentials has however 
encountered difficulties (7-8) which have been overcome by means of different 
theoretical approaches. We are concerned here with two approximate theories 
for the description of the phase diagram of systems interacting with a pairwise 
potential consisting of a repulsive part at short distances and an attractive part 
at long distances. The prototype of one such interaction is the Lennard-Jones 
(LJ) potential which is known to provide a good description of the phase diagram 
of simple atomic substances such as argon (9). The development of new experi
mental techniques for the preparation of model colloids has provided a growing 
area of research in which new phase diagrams have been observed. One of the 
main advantages of colloidal dispersions as compared to atomic systems is that 
in the former case the range and depth of the interactions can be controlled. 

0097HS156/%/0629-0297$15.00/0 
© 1996 American Chemical Society 
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298 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

In this chapter we consider the modifications occurring in the phase diagram 
of a simple fluid when the range of the attractive part is strongly reduced. Our 
theoretical predictions agree with the experimental results found in monodisperse 
suspensions of spherical colloidal particles (10) and with the simulation results 
performed on systems with short-ranged attractions (11,12). 
The chapter is organized as follows. We first review two nonperturbative density 
functional theories, the modified weighted density approximation (5) and the gen
eralized effective l iquid approximation (6). Their implementation to the freezing 
of hard spheres, soft potentials and adhesive hard spheres is briefly summarized. 
We then consider the depletion potential in colloidal dispersions and the result
ing phase diagrams obtained by reducing the range of the attractions. We finally 
develop two simple theoretical approaches for the description of these new phase 
diagrams. 

D e n s i t y F u n c t i o n a l T h e o r y o f F r e e z i n g 

In the density functional theory of freezing (13-15) the local equil ibrium density of 
the solid is determined by minimiz ing at constant average density the variational 
Helmholtz free energy of the solid, F[p], which is a unique functional of the local 
density p(r). F[p] can be split into an ideal part, Ή<ι[/>], and an excess term 
originating from the particle interactions, Fex[p], i.e.: 

F[p} = Fid[p} + FM (1) 
where the ideal contribution is expressed as: 

βΡΜ\p] = J drp(v)[HA3p(r))-l} (2) 

where β = l/keT is the inverse temperature and Λ is the thermal de Broglie 
wavelength, whereas the excess term is given by: 

0F„\p] = - J dr p(r) J dr' p(r') £ dX (1 - A) c(r, r ' ; [Xp]) (3) 

In equation 3, c(r, r ' ; [Xp]) denotes the direct correlation function of the solid and 
A ( 0 < A < l ) i s a parameter defining a linear path of integration in the space 
of density functions px(r) = λρ(τ) connecting the zero reference density to the 
local density of the solid. The variational principle involves the direct correlation 
function of the solid which is the only unknown in equations 2-3 and hence some 
explicit approximation for the excess contribution Fex[p] is required. 
Although a variety of forms for F e x[^] have been proposed in the literature (13-15) 
we wi l l only consider here the modified weighted density approximation ( M W D A ) 
of Denton and Ashcroft (5) and the generalized effective l iquid approximation 
( G E L A ) of Lutsko and Baus (6). Both approximations are based on the s imilarity 
of the thermodynamic properties of the solid and fluid phases to map the excess 
free energy per particle of the solid fex[p] = Fex[p]/N, where Ν = / drp(r) is the 
number of particles, onto that of an effective uniform fluid: 
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fifJlp) = PUP) = -pj dr jf d\ (1 - λ) c(|r|; \p) (4) 

with feX(p) and c(|r|; λ/3) denoting the free energy per particle and the direct 
correlation function of a uniform fluid, respectively, and p being the effective 
l iquid density which is used to represent the solid of density p(r). 
In the M W D A the effective l iquid density p is defined as a doubly averaged solid 
density with a certain weighting function (see (5) for details) whereas in the 
G E L A p is determined from the structural mapping (see (6) for details). In both 
approximations a self-consistent equation for the determination of p in terms of 
the local density of the solid p(r) and the direct correlation function of the l iquid 
c(|r|; /o) is obtained. The resulting equations for the determination of p can be 
simplified if the local density of the solid is parametrized as a sum of normalized 
Gaussians centered about the lattice sites: 

where a denotes the inverse width of the Gaussians and the sum runs over the 
sites of the Bravais lattice. W i t h this approximation, the effective l iquid density 
is an ordinary function p(p, a) of the average density of the solid, p, and of the 
Gaussian width parameter, a , and hence the variational solid free energy per 
particle can then be written as: 

where the asymptotic large-α form of the ideal free energy has been used. The 
equil ibrium solids are found by minimiz ing equation 6 with respect to a at con
stant average density. 

Hard spheres. The implementation of the density functional theory of freez
ing for the HS solid can be easily undertaken since analytic expressions for the 
structure (the direct correlation function) and the thermodynamics (the excess 
free energy) of the HS fluid are known from different theories (16). For the struc
ture of the fluid phase the solution of the Perçus-Yevick ( P Y ) equation is usually 
considered, whereas the thermodynamics is obtained by integration of either the 
Carnahan-Starling (CS) or the P Y equation of state. In Table I we compare the 
coexistence data for the freezing of hard spheres into a perfect fee solid, using the 
CS equation of state for the fluid phase, as obtained from the M W D A , the G E L A , 
and by Monte Carlo ( M C ) simulations (17). PF and p s denote the fluid and solid 
coexisting densities, Ρ is the pressure at coexistence, σ is the HS diameter, and L 
is the Lindemann ratio. It is seen that both theories gives good estimates for the 
coexisting densities, the best prediction for the pressure at coexistence being that 
of the G E L A . In the two approaches the Lindemann ratio is underestimated, ex
pressing that they predict a stronger localization of the hard spheres in the solid 
phase than that obtained by M C simulations. 
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Table I. H S fee solid-fluid coexistence data 
pFa3 ΡΞσ3 βΡσ3 L 

M C 0.943 1.041 11.7 0.126 
M W D A 0.909 1.035 10.1 0.097 
G E L A 0.945 1.041 11.9 0.100 

Soft interactions. In view of the accurate description of the first-order f luid-
solid transition for hard spheres, a natural question concerns the extension of the 
density functional theory of freezing to continuous interactions. Such a program 
was undertaken by La i rd and K r o l l (8) by considering the freezing properties of 
particles interacting with repulsive inverse-power potentials: 

V(r)=e{^y (7) 

and with the Yukawa potential: 

V(r) = e— (8) 
Γ 

Equation 7 reproduces the HS potential for η = oo, σ being the HS diameter, 
and the Coulomb potential for η = 1, i.e.: a one-component plasma of ions of 
charge e 2 = εσ. For intermediate n-values, computer simulations have shown 
that for η > 6 there is a fluid-fee transition whereas for η < 6 there is a fluid-bec 
transition followed at high densities by a bcc-fcc transition (18). 
Equation 8 is a simplified model of the interactions in monodisperse charge-
stabilized colloids. These interactions are described by the Derjaguin-Landau-
Verwey-Overbeek ( D L V O ) (19,20) potential which is determined by electrical 
double layer repulsion and van der Waals attraction. When the attractive con
tribution is neglected and the point-particle l imit of the repulsive contribution is 
taken, the D L V O potential reduces to Equation 8. Computer simulations have 
shown that particles interacting with the Yukawa potential can also freeze into 
a fee or a bee crystal (21-23). The bee (fee) phase is stable at low (high) i n 
verse screening lengths κ and there exists an structural bcc-fcc transition at low 
temperatures. 
The question is therefore how the density functional theories work for systems 
where the thermodynamically stable solid phase is not necessarily the close packed 
structure. The results of La i rd and K r o l l indicate that the freezing of inverse-
power and Yukawa interactions into a fee crystal as described by the M W D A leads 
to an overestimation of the liquid-solid densities at coexistence and that the error 
increases with the range of the potential. On the other hand, the M W D A fails in 
predicting any fluid-bec transition. The situation worsens for the G E L A because 
no stable or met astable fee or bee solids are found for inverse-power potentials, 
i.e.: there is no m i n i m u m in the variational solid free energies as a function of 
the inverse width of the Gaussians a for any value of the solid density. 
The different phase transitions for particles interacting with the pair potentials 
(7) and (8) can however be described using a HS perturbation theory (24) for the 
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solid phase similar to the one used for real fluids. The theory requires as input 
the fee and bee HS density functional theory results and gives a good agreement 
with the computer simulations for soft spheres (24) and for the Yukawa potential 

A d h e s i v e h a r d spheres . As shown in the previous section, the straightforward 
application of the M W D A and the G E L A to soft potentials has encountered 
difficulties. A particular pair potential which can be situated in between the HS 
potential and the real interactions is the adhesive hard sphere ( A H S ) interaction, 
first introduced by Baxter (26). The A H S pair potential can be understood by 
considering particles interacting with a square well (SW) potential: 

consisting of a HS part (σ being the HS diameter) and an attractive (e > 0) well 
of width ησ and depth e. As shown by Baxter , the direct correlation function 
and the equation of state of the fluid phase can be obtained analytically within 
the P Y approximation if one takes in equation 9 the l imit of zero width (7 —• 0) 
and infinite depth (e —> 0 0 ) in such a way as to keep finite (but nonzero) the 
contribution of the well to the second vir ial coefficient. B y denoting this finite 
value by l / 4 r , where r is known as the adhesiveness parameter, the second v ir ia l 
coefficient of the A H S model can be written as: 

r —» 0 0 the A H S model reduces to the HS system, while for finite values of r the 
A H S model can be viewed as a HS system plus an infinitely narrow attractive 

The fee solid-liquid coexistence in the A H S model within the M W D A was ana
lyzed by Zeng and Oxtoby (27) and by M a r r and Gast (28). B y increasing the 
interactions (lowering τ ) the fluid-solid coexistence was found at higher densities 
and correspondingly large values of a , resulting in smaller values of the effective 
l iquid density. A t low temperatures there is no solution for the effective l iquid 
density p for the fee lattice at r = 1.3 (28). 
Although the G E L A gives results similar to the M W D A , we consider here an 
important feature of the A H S model which has been described in detail elsewhere 
(29). A t high temperatures (r > 3) the solid free energy is a convex function of 
the density. A t r = 3 a transition occurs in such a way that for r < 3 the solid 
free energy becomes a concave function of the density; that is, for r < 3 the 
solid becomes mechanically unstable (negative compressibility). This instabil ity 
of the A H S solid at low temperatures suggests the formation of an incipient van 
der Waals loop similar to the one found for the fluid phase using a mean-field 
theory. W i t h i n the G E L A it is not possible to complete the loop, because the 
effective l iquid density becomes negative at high densities. Note that if we were 

(25). 

!

oo 0 < r < σ 
-ε σ < τ < σ ( 1 + 7 ) 

0 σ ( 1 + 7 ) < τ 
(9) 

well. 
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302 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

able to complete the van der Waals loop of the solid free energy, we would find, 
by performing Maxwell ' s double tangent construction on such a loop, a solid-solid 
transition. This solid-solid transition would correspond to the coexistence of two 
solids with the same symmetry but differing only in their density. The resulting 
solid-solid transition could therefore end in a critical point because both solids 
have the same symmetry. 

C o l l o i d a l D i s p e r s i o n s 

The addition of non-adsorbing polymer to a suspension of colloidal particles can 
cause an effective attraction between the particles by the depletion mechanism. 
This phenomenon can be interpreted in terms of a volume restriction whereby 
the exclusion of polymer particles between two neighboring colloidal particles 
produces a net attraction between them. Let us assume for simplicity that the 
colloidal particles and the polymer molecules are hard spheres of diameters σ and 
σ', respectively. O n an isolated colloidal particle the polymer suspension exerts a 
uniform isotropic osmotic pressure Π. But if two colloidal particles approach each 
other so that the center-to-center separation r is smaller than σ + σ', polymer 
molecules wi l l be excluded from a well-defined region between the particles. The 
resulting effect is an unbalanced osmotic pressure driving the particles together. 
Integration of this osmotic pressure over the portion of available surface area of 
the two particles gives rise to the depletion potential, which can be expressed as 

The depletion potential (equation 11) consists therefore of a HS part plus an 
attractive part. The range of the attractive part is determined by σ', and provided 
the ratio φ = σ ' / σ << 1 (i.e. if the radius of gyration of the polymer is smaller 
than the radius of the colloidal particle) we have a picture similar to the A H S 
model but, in this case, the interparticle potential is separately tunable in range 
and depth. The range is determined by the molecular weight of the added polymer 
while the depth is essentially controlled by the polymer concentration. 

I n t e r m e d i a t e a t t r a c t i o n s . It has been shown experimentally (10) that for 
large size ratios (φ ~ 0.6) the phase diagram is similar to the L J phase diagram 
of simple atomic substances with a liquid-vapor critical point and a solid-l iquid-
vapor triple point. For intermediate size-ratios (φ ~ 0.33), the vapor-liquid 
coexistence region is very small and the critical point almost merges into the 
triple line. F inal ly , for size ratios φ < 0.3 the l iquid phase disappears and the 

(SO): 

( H ) 

where Ω(Γ; Χ) is the volume of the overlapping depletion zones, i.e.: 

(12) 
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21. TEJERO Freezing of Colloidal Simple Fluids 303 

only effect of adding polymer is to expand the solid-fluid coexistence region. 
These experimental results agree with previous theoretical findings by Gast et a l . 
(31) and Lekkerkerker et al . (32). 
As shown above, a system of hard spheres does not have a vapor-liquid crit ical 
point. Therefore, it has been widely assumed that a necessary condition for the 
critical point is the presence of attractive interactions. In atomic systems, where 
the range of the attractions is larger or comparable to the range of the repulsions, 
the prevailing situation is a L J - l i k e phase diagram. In colloidal systems, where 
the range of the attractions can be experimentally reduced, we have seen that the 
presence of attractive interactions is not a sufficient condition for the appearance 
of a l iquid phase. 
Computer simulations have been performed to investigate the existence of a l iquid 
phase in the phase diagram. For hard spheres with an attractive Yukawa potential 
it has been shown (33) that when the range of the attractive part is ~ σ / 6 , 
with σ being the HS diameter, the liquid-vapor coexistence curve disappears (is 
metastable). For Ceo molecules, which are represented by spheres interacting v ia 
L J potentials summed over al l 60 carbon atoms, it has also been shown by M C 
simulations that there is no l iquid phase(#^). In this case, the pair potential 
of Ceo differs significantly from the L J form, since the ratio of the width of the 
attractive part to the diameter of the repulsive core of the potential is much less 
for Ceo than for noble gases. 
Recently, on the basis of a van der Waals theory (see below) the relation between 
the nature of the phase diagram and the pair potential has been investigated 
yielding a necessary and sufficient condition for the occurrence of a l iquid phase 
(35). 

S h o r t - r a n g e d a t t r a c t i o n s . Once the l iquid phase disappears, a further reduc
tion of the range of the attractions leads to a new phase diagram obtained by 
M C simulations (11,12) which however has not yet been observed experimentally. 
This new phase diagram exhibits an isostructural solid-solid transition and is in 
many ways the specular image of the L J phase diagram. The model investigated 
by Bohluis and Frenkel is a S W potential which, although simple, provides an 
adequate description for uncharged colloidal particles (see equation 11). 
A n intuitive argument for the appearance of the isostructural solid-solid transition 
was given by Bolhuis and Frenkel by comparing the situation of an expanded 
solid close to melting and a dense solid near close packing. Using the ideas of 
a simple uncorrelated cell model in which each particle moves independently in 
the cell formed by its neighbors, they considered the two following situations: 
1) If the width of the attractive well 7 is smaller than the radius of the cell R, 
a given particle can have at most three neighbors within the range 7, though 
the average wi l l be far less. 2) If R < 7 then a particle interacts with al l its 
nearest neighbors simultaneously. For the latter situation the potential energy 
is much lower than for the former, and at low temperatures this decrease of the 
energy wi l l overweigh the loss of entropy originated by the decrease of the free 
volume. Therefore, the free energy wi l l have an inflection point leading to a first-
order transition to a dense solid. For large-7 values, the solid-solid transition 
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304 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

disappears (is metastable) because it is preempted by the melting transition. 
Indeed, the resulting diagram corresponding to a S W potential with a very narrow 
width should be similar to the one found for A H S . In order to compare both 
systems, Bolhuis and Frenkel defined a parameter r related to the second v ir ia l 
coefficient of S W particles as: 

B™ = B » s ( l - ± ) (13) 

B y comparing the phase diagram obtained for A H S (29) to the S W phase diagram, 
they found that al low r the solid-solid transition crosses the melting line of the 
A H S model. This implies that, in this case, the expanded solid is no longer stable 
and the fluid coexists with the dense solid. This could explain why the A H S solid 
becomes mechanically unstable at low r . 

T h e o r e t i c a l A p p r o a c h e s 

Two theoretical approaches for the description of the isostructural solid-solid 
transition are analyzed in this section. In both studies some general aspects 
for the determination of the phase diagram of a simple fluid have been used. 
They can be summarized as follows. Suppose that we construct a (mean-field) 
theoretical model for the determination of the fluid and solid free energies of a 
system of particles interacting with a central pair-potential V(r), consisting of 
a repulsive part at short distances plus an attractive part at long distances. A t 
high temperatures, both free energies wi l l be convex functions of the density. A t 
low temperatures, each free energy wi l l develop a van der Waals loop separating 
the free energy into a low-density branch and a high-density branch. As usual, 
a Maxwell 's double tangent construction on such loops wi l l be performed. For 
the fluid phase the two branches wi l l correspond to the vapor-liquid transition, 
whereas for the solid phase they wi l l correspond to the isostructural solid-solid 
transition. Needless to say, the critical temperatures below which the free energies 
become concave functions of the density are different for the fluid and the solid 
phases. Notice, moreover, that it is always possible to perform a double tangent 
construction between the fluid branch and the solid branch to obtain a fluid-solid 
transition. In order to obtain the phase diagram of the system, we wi l l finally 
construct the convex envelope of the total free energy in order to separate the 
stable from the metastable phase transitions. 
As it wi l l be shown below the different phase diagrams (from atomic to colloidal 
systems) described in the preceding sections can be obtained from these two 
simple theoretical approaches. Both studies start with the Gibbs-Bogoliubov 
inequality (15): 

F < F = F0 + l-j dr, j dr2Po(rur2)[V(rn) - V0(ru)). (14) 

which gives an upper bound, F, of the Helmholtz free energy of a system, F, in 
terms of the Helmholtz free energy, FQ, and the pair density, p0y of a reference 
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21. TEJERO Freezing of Colloidal Simple Fluids 305 

system. V(r) is the pair potential of the system and Vo{r) that of the reference 
system. 

A s i m p l e m o d e l . In the first approach, the reference system for the fluid 
and solid phases and the pair potential are chosen in such a way that F can be 
determined analytically (36,37). The best estimate for F can then be obtained 
by minimizing F with respect to a free parameter of the reference system. To this 
end, we consider the following double-Yukawa (DY) pair potential V(r) = e<^(r), 
e being a measure of the strength of the interactions, and 

φ{τ) = ca- [ e - W ' " 1 ) - e - ^ " - 1 ' ] (15) 

where a, b and c are positive parameters (a > b). In principle, the D Y potential 
contains three arbitrary parameters which can be varied independently. B u t , 
if we keep the value of V(r) at the min imum constant, this condition reduces 
equation 15 to a two-parameter potential. Instead of two of the three original 
parameters we wi l l use two more intuitive ones: the position of the m i n i m u m , 
r 0 , and δ = (r a — r 0 ) / r 0 characterizing the range of the attractive part, with 
r i (ri > r0) denoting the distance for which the potential has dropped to 1% 
of its value at the min imum. In Table II we gather the parameters r0/a and δ 
corresponding to six representative cases to be considered below, the range of 
the attractions being denoted by L (long-ranged), I (intermediate) and S (short-
ranged). The value of the potential at the minimun has been chosen arbitrari ly 
so that V(r0/a) = — 1. 

T a b l e I I . P a r a m e t e r s d e f i n i n g t h e D Y p o t e n t i a l 
range Γ 0 / σ - 1 δ 

L 0.12 1.34 
L 0.10 0.79 
I 5 . 0 x l 0 " 3 3 . 2 8 x l 0 " 2 

I 2 . 5 x l 0 " 3 1.65X10"2 

S 2 . 0 x l 0 " 3 1 . 3 0 x l 0 " 2 

s 1 . 5 x l 0 " 3 1.05X10"2 

For the reference fluid phase we consider a HS fluid since / argus(r)Vns(r) = 0> 
with <7Hs(|ri — r21) = />Hs(|ri — r2\)/p2 denoting the pair-correlation function of 
the fluid and p the uniform density, whereas the combination of gus(r) with the 
D Y potential leads to an expression involving the Laplace transform of rgus(r) 
which, within the Ρ Y approximation, is known analytically (38). This allow us 
to evaluate exactly F for the fluid phase which is then minimized with respect to 
the free parameter λ = ous/σ, where ans denotes the HS diameter. 
For the reference solid phase we choose an Einstein solid of particles bounded 
harmonically to the sites of the fee lattice by a spring constant K/2. For this 
ideal reference system we have p0(ri,r2) = p(ri)p(r2), with p(r) denoting the 
local density which, for the Einstein solid, has the form of a sum of normalized 
Gaussians (equation 5) with a = β K/2. It can be easily shown that for this simple 
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case F can also be determined exactly for the solid phase. The best estimate for 
the solid free energy can then be found by minimiz ing F with respect to a. 

v a n d e r W a a l s t h e o r y . A more general approach for studying the solid-solid 
transition consists of developing a van der Waals theory for the solid phase similar 
to the original van der Waals theory for fluids (39). The starting point is again the 
Gibbs-Bogoliubov inequality but now we consider the following approximations: 
1) The pair potential V(r) is split into a H S reference part Vns(r) and an attractive 
part VA(T). 2) Correlations are neglected within the domain of V^(r ) , and 3) The 
upper bound of the free energy is taken as the estimate of F. These simplifications 
reduce the Gibbs-Bogoliubov inequality to the equation: 

F = F H S + ^ J άτλ J dY2pHs(*\)pHs(*2)VA(ri2). (16) 

where PHS(*) denotes the local density of the H S reference system. Note that 
equation 16 reproduces the well-known van der Waals equation for the fluid phase 
in the uniform l imi t />Hs(r) —• p: 

f = fns+l-pjdrVA(r) (17) 

where / = F/N and /HS = Fns/N. The free energy of the H S fluid /HS can be 
obtained by thermodynamic integration of the equation of state, which is taken 
here to have the simple form: 

βΡι HS (18) 
Po\ 

where PHS is the pressure of the H S fluid and p0 is the max imum density for 
which the H S fluid can exist. 
For the solid phase we assume that V^(r) is continuous (the case where V^(r) 
is discontinuous is somewhat more complicated and wi l l not be considered here 
(39)). Due to the strong localization of the particles in the H S crystal , we ap
proximate the local density /?Hs(r) in equation 16 by a delta function, yielding: 

/ = & s + 5 E ^ f o ) ( 1 9 ) 
Z 3 

where the sum runs over the lattice sites, r2- being the distance of site j to an 
arbitrary site taken as origin. In this case /HS w i l l be also prescribed by adopting 
a simple equation of state for the solid phase, which has the simple form of a 
free-distance approximation: 

βΡι HS Ccp) 1/3· 
(20) 

where PHS is the pressure of the H S solid and pcp is the fee close-packing density. 
Before constructing the phase diagrams in the van der Waals approach, the rel
ative position of the H S free energies of the fluid and solid phases have to be 
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fixed. This is done by imposing that the H S free energies change their stabil ity 
at the density predicted by the G E L A (6). This leads to a condition for the 
determination of p0 while pcp is determined by the given crystal structure. 

R e s u l t s . The two theoretical approaches we have just described give the same 
qualitative results for the phase diagrams of simple fluids. We wi l l be l imited here 
to the consideration of the phase diagrams obtained from the simple model. As 
expected, the nature of the phase diagram depends on the ratio of the range of 
the attractive interactions to the range of the repulsions, i.e. on 6. Let t = 1 /βε 
be the dimensionless temperature and ρσ3 the dimensionless density. In Figures 
1,2, and 3 we plot in the (t, />a3)-plane the stable phase transitions corresponding 
to the six cases gathered in Table II. The following situations occur: 

L o n g - r a n g e d a t t r a c t i o n s (Figure 1). There are two stable phase transi
tions: a vapor-liquid phase transition ending in a critical point, and a fluid-solid 
phase transition. The solid-solid transition is therefore metastable. For δ = 1.34 
(full dots and continuous lines) the phase diagram corresponds to that of the 
well-known L J potential. Note that by reducing the range of the attractions to 
^ = 0.79 (open dots and dashed lines) the major effect is to lower the vapor-liquid 
critical point whereas the vapor-liquid-solid triple point changes very l i t t le . This 
situation corresponds to values typical of atomic systems. 

1 . 5 0 

1 . 2 5 

t 1 . 0 0 

0 . 7 5 

0 . 5 0 
0 . 0 0 . 4 0 . 8 1.2 

Figure 1. Phase diagram of the D Y potential for long-ranged attractions. 

I n t e r m e d i a t e a t t r a c t i o n s (Figure 2). In this case both the vapor-liquid 
and the solid-solid transitions are metastable with respect to the fluid-solid tran
sition. In such a diagram there are hence no critical or triple points. The main 
effect of reducing the range of the attractions from δ = 0.41 (full dots and con
tinuous lines) to δ = 3.28 χ 10 " 2 (open dots and dashed lines) is to lower the 
shoulder on the fluid side and to move the solid line of the coexistence to higher 
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densities. This class of phase diagram is the one obtained experimentally by Ilett 
et a l . (10) and theoretically in references (31-32) for colloidal dispersions. 

1 . 4 0 

1 .15 -

t 0 . 9 0 

0 . 6 5 — 

0 . 4 0 

I ι Τ i? » r 

t 
i ψ < 6 

τ î ' 

Τ 
I Φ 

I 1 
> ? 

— 1 6 i 

1 Φ < À 

ν P ' 

I 
φ 

_L 

•*r^ef/^ 9 1 ? 

I 
y * L i 

0 . 0 0 0 . 3 5 0 . 7 0 1 . 05 1 .40 

p a 3 

Figure 2. Phase diagram of the D Y potential for intermediate attractions. 

S h o r t - r a n g e d a t t r a c t i o n s (Figure 3). There are two stable phase tran
sitions: an isostructural solid-solid transition and a fluid-solid transition. The 
vapor-liquid transition is therefore metastable. B y reducing the range of the at
tractions from δ = 1.65 χ 10~ 2 (full dots and continuous lines) to δ = 1.05 x 10~ 2 

(open dots and dashed lines) the major effect is the lowering of the fluid-solid-
solid triple point while the solid-solid critical point remains practically constant. 
This situation corresponds to the M C simulations of Bolhuis et al . (11,12) for 
short-ranged S W potentials. 
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Figure 3. Phase diagram of the D Y potential for short-ranged attractions. 
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C o n c l u s i o n s 

We have reviewed the freezing of simple fluids and shown that the well-known 
phase diagram of atomic systems described in any elementary physics course is 
only one of the various types of phases diagrams which can be encountered in 
nature. It has been found from two simple theoretical approaches that when 
the range of the attractions relative to the range of the repulsions is reduced, 
new classes of phase diagrams develop. Such diagrams have been observed ei
ther experimentally or by M C simulations and could be of relevance to colloidal 
dispersions. 
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Chapter 22 

Density-Functional Theory 
from h = 0 to 1 

Recent Classical and Quantum Applications to Aluminum 
Siting in Zeolites and the Freezing of Simple Fluids 

Shepard Smithline 

Cray Research, Inc., 655 E. Long Oak Drive, Eagan, MN 55121 

Quantum and classical density functional theory have become 
important tools for describing many body phenomena in physics and 
chemistry. In this paper we review density functional theory, 
emphasizing the quantum and classical connections of the two theories. 
We show that both versions of the theory write the density functional as 
the sum of an ideal term and a term arising from inter-particle 
interactions. By differentiating the functional with respect to the density, 
it is straightforward to derive an equation that minimizes the functional. 
In the application of the quantum theory to electronic structure, the value 
of the functional at the minumum is the energy, while in the classical 
theory, the minimum value of the functional is the free energy or grand 
potential, depending on the thermodynamic conditions at hand. In 
addition, two examples of the theory are presented. The first, an 
electronic structure application, is to aluminum siting in zeolites, while 
the second, an application of the classical theory, is to the freezing of 
simple fluids. The electronic structure theory is able to predict the 
optimal location of aluminum in the zeolite cage, while the classical 
theory, despite some notable successes, is, on the whole, less successful 
in describing the liquid- solid transition. The reasons for the apparent 
shortcomings of the classical theory are discussed. Finally, it is 
speculated that the weighted density formalism, because it provides a 
means for constructing non-local functionals, might provide a 
framework for deriving improved functionals which is important for the 
further development of the theory. 

Density functional theory has become ubiquitous in physics and chemistry. The theory 
has its origins in the Hohenberg-Kohn theorems which apply to quantum and classical 
systems (1). This allows the theory to be applied to a wide range of phenomena, 
ranging from nucleation in liquid-vapor systems (2) to the electronic structure of atoms 
and molecules (1). This chapter discusses density functional theory, emphasizing some 
of the parallels between the classical and quantum versions of the theory. In addition, 

0097-6156/96/0629-0311$15.00/0 
© 1996 American Chemical Society 
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we present two applications of the theory, one to aluminum siting in zeolite structures 
(3) and the other to the freezing of simple liquids (4). 

The paper is organized as follows. In section I I , we discuss some of the 
general quantum-classical connections in density functional theory, paying particular 
attention to the Hohenberg-Kohn theorems which form the foundation of density 
functional theory (1). Section I I I reviews the Kohn-Sham equations of electronic 
structure theory ι and applies them to a zeolite cluster, which models a heterogenous 
catalyst used in hydrocarbon separation (3). The fourth section shows how the classical 
theory can be applied to the freezing of simple fluids and is used to study the transition 
in a simple hard sphere fluid. Section V summarizes the weighted density functional 
formalism (5), describing how this idea can be used in quantum and classical systems to 
construct improved functionals. Finally, in section VI we conclude. 

Quantum-Classical Connections 

Two theorems proved by Hohenberg and Kohn provide the formal basis of density 
functional theorm (6),(7). The first theorem states that the external potential uniquely 
specifies the density of the system and vice versa: the density specifies the external 
potential of the system. Here density can refer to a quantum or classical density at 
constant particle number, temperature, and volume (canonical ensemble), or constant 
chemical potential, temperature and volume (grand canonical ensemble). The first 

Hohenberg-Kohn Theorem implies that once the density p is known everything that can 
be known is known about the system. For instance, in electronic structure theory, once 
the positions of the nucleii are given (the external potential in this case), the first 
Hohenberg-Kohn Theorem tells us that the electron density is determined. Since the 
density fixes the total number of electrons, we can write the complete Ν electron 
Hamiltonian and solve, in principle, for the many body wavefunction. Analogously, in 
the classical theory, fixing the external potential allows us to specify the canonical 
distribution function for any given system which has a particular interaction potential. 
The distribution function, in turn, allows us to calculate the equilibrium average of any 
observable. 

The second Hohenberg-Kohn theorem provides the theoretical underpinning for 
detemiining the density. It states for a given interaction potential and external potential V e x t(r) 

there exists an energy functional F[p] which is minimized when p = p ̂ . Moreover, at 
the minimum, this functional equals the energy, free energy, or grand potential, 
depending on the thermodynamic conditions at hand. 

The proofs of the Hohenberg-Kohn theorems are well known (1), so we do not 
present them here. Both the classical and quantum proofs rely on the functional 

F j / ^ T r / U + p ' V ) (D 

which has the property that when f = f 0 , the equilibrium distribution function, F[f] 
takes on its lowest value. This can be proved simply by considering the difference F[f] - F[f 0 ] 
and showing that this difference is greater than zero for all f * f 0 using a Gibbs 
inequality (8). Since the proof uses the standard properties of the trace, the trace may be 
a classical canonical trace, the classical grand canonical trace, or their quantum 
counterparts. Furthermore, the proofs utilize the fact that the equilibrium distribution 
function is the exponential of an energy divided by the trace of f, so f may refer to the 
classical or quantum distribution function. 

The zero temperature quantum case, corresponding to the conditions under 
which most quantum chemistry calculations are performed, is a special case of 1. As 
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β - oo, F becomes the energy 

F - E = < ¥ N i I Ê k | f N i > . (2) 

According to the variational theorem, the energy takes on its lowest value when 
ΨΝΪ = ΨΝΪ » ^ e ground state wavefunction. Thus, the variational theorem play the role of 
the Gibbs function at zero temperature and we can make the following analogies: 

1. Energy < — > Free energy 
2. The expectation value < — > Trace 
3. The ground state wavefunction ψ Ν ί < — > The distribution function f 
4. The variational theorem < — > The Gibbs theorem 

Clearly, the zero temperature Hohenberg-Kohn theorems are closely related to their 
finite temperature cousins (1). 

Functionals are generally constructed by writing them as the sum of two parts, 
an ideal term, which ignores inter-particle interactions and is specified exactly, plus a 
term which accounts for the interaction and is known approximately. For instance, in 
electronic structure theory, the reference system is a collection of non-interacting 
electrons (1) and one writes 

E [ P ] = T 8 [ P ] + "correction (3) 

where T 8 [ p ] is the kinetic energy of a system of non-interacting electrons and the 

"correction" is J[p] +E x c [ p ] , J[p] being the classical coulomb potential and E x c [p] 

being the exchange correlation potential. This last term includes the quantum exchange 

terms left out of J[p] and the kinetic energy corrections to T 8 [p]. We show below that 

J[p] + E x c [p] plays the role of a mean field potential which generates the density. 
Similarly, for the classical case one often writes (8) 

p [ p ] = * ι « [ p ] + φ [ p ] · w 

The expression F i d e a i is the free energy of a non-interacting system. In applications to 
simple fluids, the reference system a monatomic gas. The second term in equation 4, 
φ [p ] , is the contribution to the free energy due to interactions and like J[p] + E x c [p ] , 
gives rise to an effective one body potential which determines the density. 

Interestingly, not all density functional theories construct functionals by writing 
the functional as an ideal plus interacting piece. The geometric measures theory of 
Rosenfeld is one such example. In effect, it writes the free energy functional by 
interpolating between low and high density limits. We describe this theory in 
connection to hard sphere freezing in section IV. 
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Electronic Structure Application 

Kohn-Sham Theory. Almost all electronic structure calculations using density 
functional theory are carried out within the Kohn-Sham formalism (1). In this section 
we briefly review this approach and show how we can apply the formalism to an 
important problem in catalysis: the relative energetics of aluminum siting in zeolites (1). 

The Kohn-Sham method starts with the functional 

E[p] = T e [p] + J[p] + Exc[p]. (5) 

By writing the density as p = £ [y^and differentiating equation 5 with respect to the 

i 

density, subject to the constraint that the Kohn-Sham orbitals remain orthonormal, 
one can derive the Kohn-Sham equations 

( - y V i 2 + V t f ) V i = e i V i (6) 

where t{ is a Lagrange multiplier resulting from the constraints on the orbitals and 
is the effective one body potential that generates the density. 

The exchange-correlation potential, which is included in the effective potential, 
is often computed using the local density approximation (LDA). LDA breaks space into 
small regions of nearly constant density. Since the exchange correlation energy for a 
uniform electron gas is known, the exchange correlation energy for the entire system 
can be computed by quadrature. The LDA approximation does surprisingly well, and is 
discussed below and by other authors in this volume. 

Application to Zeolites. We illustrate quantum density functional theory by 
studying zeolites (3). Zeolites are important catalysts, particularly in the petroleum 
industry, where they play a critical role in the catalytic cracking of large hydrocarbon 
molecules. The catalytic activity of zeolites is known to depend largely on their acidic 
properties which arise when aluminum atoms are replaced by silicon atoms. 
Consequently, it is of interest to know the location of aluminum atoms in the zeolite 
structure. Ab initio computations have predicted geometries and energies of a large 
number of compounds, but catalytic compounds have generally been too complex to 
study by such methods. To overcome these computational limitations, semi-empirical 
orbital calculations can be used to calculate the preferred aluminum position; however 
these methods require the selection of various parameters whose accuracy has not been 
determined for these compounds. As a result, we were lead to investigate the 
distribution of A l in mordenite using density functional theory. Calculations on two 
different clusters were performed: 

(i) A 39 atom cluster with formula S17O20H12 
(ii) A 75 atom cluster, S114O39H22 

in which the Si was replaced by Al at four different locations, known as Τ sites, and the 
relative energetics of the substitution was determined. Figure 1 shows the locations of 
these sites. T l and T2 reside on rings with 5 tetrahedral atoms (eg. Al or Si) while T3 
and T4 are four atom rings. 

In addition to choosing the cluster geometry, a method must be chosen to 
truncate the cluster in such a way which preserves valency and charge distribution. This 
was accomplished by adding hydrogen atoms to the cluster to terminate the bonds. 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 9

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 5
, 1

99
6 

| d
oi

: 1
0.

10
21

/b
k-

19
96

-0
62

9.
ch

02
2

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



316 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Bonds lengths of .98 A for O-H and 1.43 for Si-Η were used. The geometries were 
taken from the de-hydrated structures of Schlenker, Pluth and Smith (9). Al l 
calculations were performed with DGauss, a density functional program developed by 
Cray Research, as part of the UniChem quantum chemistry package.(9) Calculations 
were performed with a valence double-zeta basis set with polarization (DZVP); these 
basis sets are comparable in size to 6-31G*, but have been optimized for DFT. Becke-
Perdew corrections to the local density approximation were added self-consistently. 
Table I below shows that T2 is predicted to be the most stable site (3). 

Table. I The relative energies of the different clusters for the four 
different Τ sites. All energies are measured in kcal/mole. 

Cluster T l Site T2Site T3Site T4site 

39 atom cluster 24.6 0.0 11.3 13.9 

74 atom cluster 10.10 0.0 4.12 16.18 

Our prediction that T2 is the preferred site is consistent with experiments (10).(11), 
though some ambiguity remains. Bodart et. al. found that their experimental results are 
consistent with assuming that T3 and T4 are preferentially occupied, a result which was 
confirmed by previous computational studies on smaller clusters using Hartree Fock 
theory (12). In contrast, Itabishi drew different predictions from adsorption and NMR 
studies on synthetic mordenites. They argued that T2 site is a plausible location of Al 
which is consistent with our results. One effect that we have not completely 
investigated is the role that crystal relaxation plays in determining the relative ordering of 
the various sites. We are currently investigating this effect by allowing the aluminum 
and the nearest neighbor oxygen atoms to relax in the 74 atom cluster. Our preliminary 
results indicate that T2 remains the lowest energy site. We hope to report the results of 
this calculation in a future work. 

Classical Statistical Mechanics Application 

In contrast to quantum density functional theory, which is most often applied to 
questions of electronic structure, the classical theory is applied to a much wider variety 
of systems, ranging from liquid - vapor nucleation to polymeric systems. The 
intermolecular interactions in these systems are far more complex than in electronic 
structure problems, and because one usually does not know the exact Hamiltonian for 
these systems, relatively simple models are used to construct functionals. The results 
of these calculations are then compared to computer simulations. While the comparison 
to simulation may be quantitative, the real value of these theories is the qualitative 
understanding they often provide of actual many body systems. Here we apply the 
classical theory to the freezing of simple liquids. 

Freezing Theory. The starting point for developing a theory of first order phase 
transitions, such as freezing, is the Legendre transform of equation 11, or the grand 
potential functional, 

Ω[p]= J d f p ( r ) V e x t ( f ) + Ρ^ [p (τ ) ] -φ [p (? ) ] -μ J d F p O D (7) 

where u is the chemical potential Here the reference system is an ideal monatomic fluid 
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whose free energy is given by a simple analytic expression. Note, that working in the 
grand ensemble allows us to conveniently equate the chemical potential of the liquid and 
solid, one of the conditions which must be satisfied at the transition point. 

Differentiating equation 7 with respect to p (f ), and setting this functional 
derivative to zero yields 

p(F) = λ " 3 6 χ ρ [ β (μ + V e x t(r) + C[p(f)]) (8) 

where 

0[p(Τ)] = δφ/δρ. (9) 

Note, that equation 20 shows explicitly that the density is determined by an effective one 
body potential, analogous to ν Λ in Kohn-Sham theory. 

It is straightforward to use this approach to study the freezing transition.(13) 
The derivation is given in reference 14. The final result is 

1η[ρ8(?)/ρί] = / α Τ Ο [ τ ; μ 5 , Τ δ ] - 0 [ μ ί , Τ , ] - ε (10) 

where 

C [ f ; μ s , T J - C [ μ L , T J = J d T c ^ ( f f - F I ) [ p s ( 0 - p L ] [ p s ( f ) - p L ] 

+ J d 7 d 7 c \ ( l f - F I , l ? - r i ) [ p s ( f ) - p J [ p s ( f ) - p J [ p s ( r " ) ~ p J + ... 

Equation 9 is the fundamental equation of the freezing theory and admits non-
trivial solutions for a set of chemical potentials and temperatures. The solution 
corresponding to the freezing point is identified as that solution where the pressures of 
the two phases, calculated to the same order in perturbation theory, are equal. When the 
equality of pressures is satisfied, the solutions of 9 are guaranteed to generate a 
thermodynamically consistent transition point, since 9 was derived assuming that the 
temperatures and chemical potentials of the two phases are equal. 

Equation 9 is analogous to equation 6 in Kohn-Sham theory, as both arise by 
minimizing a functional with respect to a density subject to a constraint - the perfect 
crystal constraint in classical theory and the orthonormality of the Kohn-Sham orbitals 
in the quantum theory. Just as in Kohn-Sham theory, equation 9 is solved by 

expanding p(f) in a basis, such as Gaussians centered on lattice sites at the solid 
positions, Rr 

p(τ) = Σ (α /π ) 3 / 2 βχρ [ -α ( Γ - ^ ) 2 ] (12) 
i 

or trigonometric functions, 

ρω=Σ μ,/ ' 7 (13) 
n = 0 

summed over reciprocal lattice vectors k n. The particular lattice vectors or reciprocal 
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lattice vectors are chosen to describe the symmetry of the particular solid one wishes to 
study (eg. fee, hep). The order parameters ( α or μ η ) are determined by substituting 
equations 12 or 13 into 9 and solving the resulting algebraic equation. Equation 12 
restricts the solid to isotropic and harmonic oscillations about the lattice sites while 13 
lifts this approximation, being a general representation for a periodic structure. 

Expanding the solid density in a basis illustrates one of the central assumptions 
of the theory. One must assume the symmetry of the solid; the theory does not predict 
the symmetry of the solid, though it does predict the magnitude of the lattice vectors. 
Currently, there is no a priori way of addressing the issue of spontaneous symmetry 
breaking in classical density functional theory. 

Another major assumption concerns expansion 11. Even if the expansion (4) is 
carried out to infinite order, a functional Taylor expansion like 11 suppresses 
fluctuations by prohibiting configurations in which some regions are liquid-like and 
others to be solid-like. This assumption is known as the homogeneity approximation 
and is central in all mean field theories of phase transitions. Like the assumption of 
spontaneous symmetry breaking, we know of no way of addressing this approximation. 

Application to the Freezing of Hard Spheres. The freezing theory has been 
applied to a wide variety of problems, ranging from systems with purely repulsive 
forces, such as hard spheres and inverse power potentials, to systems with attractive 
forces, such as Lennard-Jones fluids and the one-component plasma, to more complex 
systems such as water and polymers (4). The results are some what inconsistent. For 
hard spheres the theory performs well, yielding a reasonably accurate freezing density 
and the density change on freezing, for instance (4). For moderately complex systems, 
such as inverse power potentials, the theory does less well, failing for instance to 

predict the bec phase ε ( σ / Γ η ) , η * 6 where ε and σ measure the strength and 
characteristic length of the interaction (14). For more complex fluids, the theory exhibits 
"re-entrant" behavior, successfully predicting, for instance, the freezing of water (15) 
and polyethylene (16). 

Given this somewhat inconsistent performance, we re-examined the theory. 
One of the critical assumptions of the classical theory is the truncation of expansion 11 
at second order. While the higher order terms are not thought to be small, it is often 
assumed the integral of them times the corresponding density difference is. This 
assumption is usually not checked because the evaluation of these terms is very difficult 
Recently, however, a theory for constructing free energy functionals has been proposed 
and allows the higher order terms to be computed by functional differentiation of 
F[p(r)] (17). When the triplet term is computed for hard spheres, it is found to agree 
quite well with computer simulations, and thus, it is natural to see how this term affects 
die results of the freezing theory. Before we present these results, we begin with a brief 
derivation of this Rosenfeld's free energy functional. Our discussion closely follows 
reference 18, and the reader is encouraged to consult it for more details. 

Rosenfeld postulated the following general form for the excess free energy 
functional (that part over and above the ideal contribution) as, 

F J t p . f f ) } ] = J d 3 f «{n e Cf) f n q 0f)}] = J d 3 f φ[{η α(Τ)}], (14) 

where n a(f) is a weighted density 

n a ( f ) = J d 3 r P i ( F ' ) û ) ( r - r ) , (15) 
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22. SMITHLINE Density-Functional Theory from S = Oto 1 319 

where Pj(f) is the density of species i. Rosenfeld gives the explicit forms for 

cof(F-F). They depend on the geometrical properties of the spheres and consist of 
vector and scalar functions. Equation 14 allows us to write the excess pressure 
function, Π [ { η α } ] , and chemical potentials, μ β χ and μ Μ , as 

Π = - φ + Σ η α θ φ / θ η α 

α 

μ ? = /ά3ϊ'Σοφ/5ηβ[{ηγ(Τ)}]ωΓ(Τ-Γ ) 
α 

μ ^ ΐ η ί ρ ^ λ 3 ] 

(16) 

(Π) 

(18) 

Although it is probably not readily apparent at this point, the assumption that the excess 
free energy density is a functional of only the fundamental-measures weighted density, 
restricts the final form of φ[{η α } ] considerably. I f we impose the exact relation for the 

uniform chemical potential μί->Ρν4 for R ^ 0 0 , on our fundamental measure 
description of the non-uniform fluid, the following differential equation must be 
satisfied, 

Π + η 0 = 3 φ / θ η 3 (19) 

This relation can be derived by observing that the scalar and vector weights respectively 
satisfy 

J d ' T V f f ^ l . R , , (20) 

Jd3FÔL>?(f)=0, (21) 

where Rj, Si, and Vi are the radius, surface area, and volume of sphere i. 
Consequently for homogeneous fluids, equation 17 can be re-written as 

μ " = δ φ / δ η 0 + δ φ / δ η ^ ί + δ φ / δ η 2 8 ί + δ φ / δ η 3 ν ί (22) 

Now since P i d / k T = Σ Pi» where P i d is the ideal pressure, then 

f P w 1 = V, 
. kT . 

= V, 
. kT . ψ i 

Jd'îEp.ÔOfl-R.y^nR?) =V ,n 0 

sinceœ" isdefinedasœj >(F-r)=6(l f , l -r) /(4jcr 2 ). Therefore, 

PV,=V,{n e+n} 

(23) 

(24) 

and imposing μ) - PVj yields, 
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V i n + V i n 0 = ln [p ( ïU 3 ]+ · (25) 

Upon dividing by Vj and letting Rj->«>, only δφ/δη 3 survives, giving the scaled 
particle differential equation 19. Using 19 we can write equation 16 as, 

-φ+Ση α 3φ/3η α + η 0 = 3φ /θη 3 (26) 
α 

Furthermore, the only positive integer power combinations which have units of V" 1 (as 
required by the virial theorem) are 

n 0 , n,n 2 , ( n 2 )
2 , fij.ii2, n 2 ( n V n 2 ) , (27) 

and therefore form a basis for φ, 

φ = ί 0 η ο + ί 1 2 n 1 n 2 + f 2 2 2 ( n 2 ) 2 +f 1 2 ï i 1 . n 2 + f 2 2 2 n 2 ( n V i i 2 ) . (28) 

The functions f are dimensionless, and for generality are allowed to depend on n 3 , a 
dimensionless quantity. Substituting equation 28 into 26 results in five differential 
equations which allow the f s to be determined. The boundary conditions of the 
differential equations are chosen so that equation 28 reproduces the low density 
expression for the free energy density and the three particle diagram for c 2 (r) . As a 
result it can be shown that, 

Φ = Φ . + Φν 

where 

(29) 

and 

φ 8= - η 0 1 η ( 1 - η 3 ) + η 1 η 2 / ( 1 - η 3 ) + 1 / (24π)η 3

2 / (1 -η 3 )
2 (30) 

φ ^ ϋ ^ ϋ , / ί Ι - η , ί + Ι / ί δ π ^ ί η , . η , Χ ί Ι - η , ) 2 (31) 

Now the m-th order direct correlation functions are given by 

δΡ β χ [{p:(Τ)}]/κΤ 
c ™ , (T l f ï a e . . . f m ) = - " J ' ' 

= Jd 3 x Σ {aV^nai...anaJœa,(f1-x)....œ°m(?m-x) 

(32) 

If we fourier transform c™ ...j and note that in the uniform liquid d mtyI d η α ... d na are 
Γ ni 1 m 

independent of position, then in k-space the direct correlation function is simply a linear 
combination of weight functions 
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φΰ = - Σ 3 2 φ / β ι ι β 3 npftr(k)©f(k) (33) 
*β 

Equation 33 can be inverted to yield the real space representation which can be shown 
to be equivalent to the Perçus-Yevick direct correlation function. 

Similarly for the triplet function we can write, 

c 3 ( k 1 , k 2 , k 3 ) = - Σ e ^ / a n e a n p a n ^ ( k 1 ) û f ( k 2 ) û ; ( k , ) 6 ( k l + k 2 + k 3 ) (34) 
«.β.γ 

There are a total of 33 terms in expression 34, explicit expressions for which are given 
in Rosenfeld's paper. Our derivation of 34, which is in excellent agreement with 
computer simulation results and relies on the scaled particle differential equation, shows 
how one can construct a free energy functional that effectively interpolates between the 
low and high density results. 

Now, returning to the third order contribution to the free energy, we note that the 
triplet function's contribution to the free energy can be evaluated (18) as 

4= Σ c w ( k l f k 2 , k 3 ^ ^ k (35) 
M A 1 2 

where the sum is over all reciprocal lattice vectors ί{ of the solid subject to the triangle 

condition: E3 = - ^ - £ 2 . The coefficients μι̂  are the fourier coefficients of a Gaussian 

solid density. The results, shown in Table Π, indicate that the third order term is nearly 
as large as the second order term, and as a result, there is no a priori way of justifying 
truncation of equation 11 at second order. 

Table I I . The second and third order contribution to the free energy functional 
divided by kT^oOf fee hard spheres (of diameter σ) of average solid density p,& and 
gaussian width α σ 3 as a function of liquid density, solid density and gaussian width: 

a. p L a= .79 , ρ β σ ' = .975, α σ ' = 180; b. p t a 3 = .975, ρ β σ ' = .975, α σ 5 = 180; 

C. p L G 3 = .79, ρ σ ' = .79, α σ 3 = 50 ; d. p L a 3 = .975, ρ σ ' = .975, α σ 3 = 50 
For comparison the results of Curtin-Ashcroft (reference 22) are also shown. 

Second-Order Terms Third-Order Terms 
(us) 

Third-Order Terms 
(Curtin-Ashcroft) 

a -3.8857 -1.6502 -1.841 

b -3.2576 -4.2856 

c -1.5802 -1.5918 

d -2.1094 -1.588 

These results strongly suggest that the apparent agreement between the second order 
theory freezing theory and computer simulation data is fortuitous in sense that one does 
not understand why truncating at second order should result in a good description of the 
liquid-solid transition. While we performed calculations only for hard spheres, we expect 
our results to be qualitatively correct for more realistic fluids which contain attractive as 
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322 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

well as repulsive forces. The reason for the apparent failure of expansion equation 11 is 
explored in section V. 

Non-local Functionals 

One of the common assumptions of LDA theory and the freezing theory discussed above 
is that the free energy functional is a local functional of the density. That is, the density is 
evaluated at a point in space and from the value of the density at that point in space, the 
free energy is evaluated. However, we know quantum exchange is inherently non-local. 

For example within Hartree-Fock theory exchange operator K b (ΐι ) is given by 

which is clearly non-local. Similarly, we expect the free energy functional for the 
classical freezing theory to have non-local character. The origin of the classical non-
locality can be understood from 

where Ψ(ρΟΟ) is the free energy per-particle in a homogeneous system. This expression 
for the free energy implies that a particle at r is only affected by particles around it in a 
given range of interaction. If the range of the particle interactions is smaller than the 
length scales over which the density varies, then it is often reasonable to break the 
system up into small pieces, each one of nearly constant density, evaluate the free energy 
of each piece as if it were part of a homogeneous system, and add them up (integrate 
them) to get the total free energy. This prescription is followed in LDA theory. 
However, this approach is of limited use in the liquid -solid transition. Since the density 
of the solid reaches large peak values, the value of the free energy functional of the 
corresponding homogeneous system, is almost certain to be quite different the free 
energy functional of the real system. In fact, the density may even be impossible to 
achieve, as is the case for hard spheres, when the density exceeds the close-packing limit. 

It is possible to imagine other schemes which employ a homogenous reference 
system to evaluate the free energy of an inhomogeneous system, but, if the density is not 
smooth on the relevant length scales, then a local density approximation is likely to 
break down. A fluid at a first order phase transition or up against a hard wall are clearly 
such cases. Thus, even if we could sum the series of equations 11 to beyond third order, 
it is not clear, a priori, that this would result in a good description of the liquid-solid 
transition, since expansion equation 11 is an inherently local approximation. 

Still the notion of using a homogeneous system to describe inhomogeneous 
systems is appealing, provided one can introduce non-locality into the functional. One 
way to construct a non-local functional is to use a weighting functional. This idea was 
first used in electronic structure density functional theory ,(19) and subsequently used by 
researchers in classical liquid theory (20). The essential idea is to replace p(f) in 
equation 7 by a weighted density, 

(36) 

F=Jd 3 rp(r)y(p(f)) (37) 

(38) 
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Note that Rosenfeld's scalar weights are a special case of 38 for which we set 

w ( r , r \ p ( r ) )=co ( r ,F ) (39) 

There are two general ways of choosing the weight functions. One is to select 
them by a priori means, as done by Rosenfeld. The other is to "tailor" the weight function 
to reproduce some known properties of the homogeneous fluid. There are disadvantages 
to both techniques. If we adopt Rosenfeld's theory, then the weighted density cannot 
easily be interpreted as an effective local density due to the presence of the vector weight 
functions, as the weighted density now becomes a vector quantity not a simple 
scalarfunction. On the other hand, i f we tailor the weight functions to mimic some 
property_of the homogeneous fluid then it is possible to derive a relation for 

w \r,F , p (r) j . For instance, if we use the full weight function then one can derive a 
differential equation which relates the weight function to the pair correlation function 
(21). Alternatively, if one is restricted to scalar weighted densities which are simple 
linear averages of the density (as in equation 15), one can derive weight functions, 
though they are non-trivial, as they involve derivatives of delta functions (22). The 
"tailored" functionals also have been applied to study the freezing of simple fluids (4) 
and while in some cases they give better answers, they still are not free from artifacts 
(4),(17). Interestingly enough, had we used the Rosenfeld weighting functions, and 

determined φ β χ by tailoring it to reproduce the Perçus - Yevick direct correlation function 
instead of using the scaled particle differential equation, we would not have found 
Rosenfeld's vector component of φ β χ and for certain values of the k vectors, the vector 
part of the triplet function contributes about half the value of the value of the total 
function. As a result of the somewhat arbitrary nature of deriving weighted density 
functionals, it is clear that the idea needs to be further refined before it can be used 
reliably to describe the liquid-solid transition. 

It should also be pointed out that the weighted density approximation was 
abandoned in electronic structure theory because other approaches proved to be more 
reliable (23). The original implementation of the weighted density idea used the random-
phase approximation to compute the exchange-correlation functional for a homogeneous 
electron gas (21). However, i f one could tabulate the exact pair function for a 
homogeneous electron gas, similar to the way one tabulates the exchange-correlation 
energy of the electron gas, then the RPA approximation could be lifted. As a result, the 
weighted density approximation, when combined with the various scaling relations used 
to construct the gradient corrected non-local functionals, might lead to new and more 
accurate models for the exchange-correlation energy. 

C o n c l u s i o n 

Density functional theory has its origins in the Hohenberg-Kohn theorems. Since these 
theorems apply equally well to quantum and classical systems, density functional theory 
can be applied to problems in quantum and classical mechanics. Given the theories' 
common origin, it is not surprising that there are many similarities between the quantum 
and classical versions of the theories, and in this paper we discussed some of these 
similarities. We showed that both the quantum and classical versions of the theory 
often write the appropriate energy functionals the sum of an ideal and an interaction 
term. By minimizing the functional with respect to the density, it is straightforward to 
derive an equation for the density where the density is determined by a mean field 
potential arising from the inter-particle interactions. 

Besides discussing quantum-classical analogies in density functional theory, we 
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illustrated the theory by presenting two applications, one to aluminum siting in zeolites 
and the other to the freezing of classical fluids. The quantum version of the theory is 
able to predict the optimal location of aluminum in the zeolite cage while the classical 
theory, despite some notable successes, is less successful in describing the liquid- solid 
transition. The apparent shortcomings of the classical theory reflect the inherent 
difficulty of developing a first principles theory for first order phase transitions. Indeed, 
we argued that a density functional theory of freezing probably requires a sophisticated 
non-local free energy functional. Unfortunately, it is not at all clear how to construct 
such a functional. One possibility is to use a weighted density formalism. Besides being 
potentially useful in classical theory, this approach might also be helpful in deriving 
newnon-local functionals for quantum density functional theory, although additional 
work needs to be done to further develop this idea. Nevertheless, whatever the outcome 
of future research into weighted densities, we are optimistic that, given the past 
successes of density functional theory, the theory will continue to be an exciting and 
useful formalism for describing many body phenomena, be they quantum or classical 
systems. 
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Chapter 23 

The Calculation of N M R Parameters 
by Density-Functional Theory 

An Approach Based on Gauge Including Atomic Orbitals 

Georg Schreckenbach, Ross M. Dickson, Yosadara Ruiz-Morales, 
and Tom Ziegler1 

Department of Chemistry, University of Calgary, 2500 University Drive 
Northwest, Calgary, Alberta T2N 1N4, Canada 

Schemes for calculating nuclear magnetic resonance (NMR) shielding 
tensors and spin-spin coupling constants have been implemented in the 
Amsterdam Density Functional program system (ADF). The shielding 
tensors are calculated by the Gauge Including Atomic Orbitals 
(GIAO). This method and the calculation of the coupling constants are 
tested for a number of smaller molecules and it is shown that 
calculations of couplings to transition-metal nuclei and shielding 
tensors in metal complexes are feasible. 

1. Introduction. 

Nuclear magnetic resonance (NMR) is used extensively (1 ) as a practical tool in 
chemical research. Many of its applications can be carried out based on a simple 
effective Hamiltonian in which the observed shifts and spin-spin coupling constants 
are used as parameters without any further interpretation. However, an understanding 
of how electronic and geometrical effects influence these parameters has not been 
established in detail except for a few classes of compounds (la-c), although such an 
understanding might enhance the amount of useful information obtained from NMR 
experiments. 

Computational methods based on molecular orbital theory can in principle 
provide the required insight (la-c), and the comparison between calculated and 
observed NMR spectra might further help in the identification of new species. With 
this in mind, several first principle methods capable of calculating NMR parameters 
have appeared over the last decade (la-c). 

Density functional theory (DFT) (2) forms the basis for some of the approaches 

used in computational studies of the shielding tensor σ. Recent advances in DFT 
have made it possible to use this approach for shielding calculations. Malkin et al. 
have published a series of pioneering papers on the calculation of NMR properties, 
including shielding (3a-g) and spin-spin coupling (3h). To calculate the shielding, 
they combine modern DFT with the "individual gauge for localized orbitals" (IGLO) 
method (4). 

We have recently presented a method in which the NMR shielding tensor is 
calculated by combining the "Gauge Including Atomic Orbital" (GIAO) (5) approach 

1 Corresponding author 
0097-6156/96/0629-0328$15.00/0 

© 1996 American Chemical Society 
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23. SCHRECKENBACH ET AL. Calculation of NMR Parameters by DFT 329 

with DFT. Our implementation makes full use of the modem features of DFT in 
terms of accurate exchange-correlation (XC) energy functionals and large basis sets 
(6). 

Of particular interest - and still a challenge -- are applications in multi-nuclear 
NMR (lc, d), e.g., transition metal NMR. We present here results for carbonyl 
complexes M(CO)6 (M= Cr, Mo, W). 

In the present paper we address as well the calculation of nuclear spin-spin 
coupling constants. Spin-spin coupling constants are very difficult to compute. In the 
non-relativistic formulation of Ramsey (7) mere are four terms, each of which has 
different requirements with respect to correlation and basis set. Malkin et al. (3a,g) 
provided the first practical implementation of these calculations in a density 
functional program, using a basis of Gaussian-type basis functions. In this paper we 
illustrate an implementation using a basis of Slater-type rather than Gaussian 
functions, and examine the feasibility of calculating spin-spin coupling constants in 
transition-metal systems. 

2. The Calculation of Shielding Tensors. 

Shielding tensors and the G I A O - D F T method. The details of the GIAO-DFT 
method have already been described previously (6a,b). However, we wil l have to 
stress a few points about NMR in general and the GIAO formalism in particular to 
facilitate the discussion in the next sections. 

In NMR one considers the interaction energy between a nuclear magnetic 
moment fiN in an electronic system and an external homogeneous magnetic field 

B0. The presence of B0 will induce an internal magnetic field B^ni -Β^Λ-Βρ in the 

electronic system so that the total interaction energy is given by 

E = -fiN(Bd+Bp + B0) 

= - / 2 N ( l + d)-B 0 (1) 

= -jiN-<\ + ¥ + d*)-B0 

where 

Bd=-¥>B0 

s - a (2) 
Βρ = - σ ρ Β 0 

Here σ = σρ + ¥ are referred to as the shielding tensors; one third of the trace of σ 
is the shielding constant. The vector Bd represents the diamagnetic component of the 

induced field. It is in most cases opposite to B0 with Bo-Bd<0 for any orientation 

of B0, and thus the diamagnetic shielding tensor ¥ must according to eq. 2 have a 

positive trace and positive symmetrical diagonal components. The paramagnetic part 

of the induced field Bp points in the direction of Z^with BoBp>0 for any 

orientation of B0. In this case the paramagnetic shielding tensor σρ must have a 
negative trace and negative symmetrical diagonal components according to eq. 2. 

The diamagnetic shielding ¥ depends only on the unperturbed electron density, p°, 

while the paramagnetic shielding, σρ, contains the density up to first order with 
respect to die external magnetic field. 

Then, the st-component of the diamagnetic tensor ¥ is given in our GIAO 
formalism as (6) 
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of, = α2 Σ J ^ p ^ ^ r ^ J V - M a i - ' i v / ^ ^ v 

λ,ν 
(3) 

Here the occupied molecular orbital (MO) Ψ,· has been expanded in terms of 

atomic functions χν and the coefficients c^-. The zero superscript indicates that Ψ,· 

is calculated with zero magnetic field strength, BQ = 0, as an eigenfunction to the 

Kohn-Sham operator h(o) with the eigenvalue ef. The vector rv = r -Rv denotes 

the position of the electron relative to the nucleus at which the atomic orbital χν is 

centered, and rN is the position of the electron relative to the nuclear magnetic 

moment under consideration (relative to the NMR nucleus N). Further α is the 
dimensionless fine structure constant given as 1/137. The diamagnetic shielding 

tensor âé of eq. 3 is gauge invariant and an expectation value of Hermitian operators. 
It depends only on the unperturbed occupied orbitals for which nj * 0; this has been 
pointed out before. 

The st-component of the paramagnetic tensor σρ is given according to the GIAO 
formalism as 

occ 
Σ 4 Α ( ζ λ 

λ , ν 

Γ-^χν 
-it 

unocc 

• . AU) _J0)s{U) 

« ε ( ° ) - ε ( ° ) 
with i ^ a 

(4) 

(5), 

Χν 

and 

x V Χν)+{Χλ | x ( ^ v - ^ ) ] A(0)b 

(6), 

(7), 

The index J runs over orbitals occupied in the field free ground state and the index a 
runs over the corresponding unoccupied orbitals. The paramagnetic shielding tensor 

σρ of eq. 4 is also gauge invariant by itself and an expectation value of Hermitian 
operators. The leading contribution to the paramagnetic shielding is the last term in 
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eq. 4. It represents the first order magnetic coupling between an occupied molecular 
orbital, z, and a virtual orbital, a. This coupling is facilitated by way of the first order 

coefficient u^s\ which is inversely proportional to the difference of the 
eigenvalues, eq. 5. 

It is worth noting that the shielding is completely formulated in terms of the 
(occupied and virtual) MO's, eqs. 3-7. This is an advantage of the GIAO formalism 
as it allows for the detailed analysis of the different orbital contributions to the 
shielding tensors. 

Computational details. The above established formalism has been implemented into 
the Amsterdam Density Functional Package (ADF) (8). Al l properties are evaluated 
using the given numerical integration scheme of ADF. We will use non-local XC 
energy functionals (9), unless otherwise stated. We employ uncontracted Slater Type 
Orbitals as basis functions. Our basis sets are generally of triple ζ quality in the 

valence region, and of double ζ quality for core MO's. They are augmented by two 
sets of (p or d) polarization functions per atomic center. The experimental geometries 
are the basis for all calculations. 

G I A O - D F T calculation of shielding constants for simple molecules. Calculated 
shielding constants for a representative set of small molecules are collected in Table I. 

T A B L E I. Calculated and Experimental Shielding Constants for a Number of 
Small Molecules 

M^MM""*"*"a^^^^^^^^^MTsôm>pî^ 
Molecule Atom DFT-GIAOa" DFT-IGLO^ Experiment 

CH4 C 191.2 187.7 195.1 
H 31.4 31.2 30.6 

CH3F C 111.4 101.4 116.8 
F 462.3 450.7 471.6 
H 27.2 26.7 26.6 

H2O 0 331.5 324.3 344.0 
H 31.2 31.1 30.1 

N2 Ν -72.9 -78.9 -61.6 

C2H2 C 110.4 108.9 117.2 
Η 30.4 30.0 29.3 

Benzene C 50.0 48.8C 57.2 

H2CO C -15.7 -26.6 -8.4 
0 -418.8 -455.6 -312.1 
H 20.7 20.8 18.3 

F2 F -282.7 -250.6 -232.8 
a Reference 6a. b Uncoupled DFT-IGLO: Ref. 3b. We cite the results for the same LDA/NL 
functional as in our DFT-GIAO method. c Ref. 3e. 

We compare our results with those obtained by the "uncoupled" DFT-IGLO of 
Malkin and co-workers (3a-c) as well as with experiment. The agreement with 
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332 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

experiment is generally satisfactory. The GIAO shieldings are of about the same 
quality as those obtained by the IGLO method, in most cases even slightly better, 
Table I. A direct comparison is however not possible since this would require to use 
exacdy the same basis sets. 

The agreement with experiment is not as good for non-hydrogen shifts in 
molecules like H2CO or F2 (this applies to both the GIAO and the uncoupled IGLO 
methods). These molecules are difficult cases for DFT in general. 

Calculated G I A O -DFT shielding anisotropics for simple molecules. The 
shielding anisotropy, i.e., the individual tensor components of the shielding tensor, 
should be even more sensitive to the quality of the quantum-chemical method used 
than the (averaged) shielding constant. Here, we define the shielding anisotropy Ac 
as the difference between the parallel and the orthogonal principle components 

Δσ = σι - σ ± (8) 

In Table I I , we compare shielding constants and anisotropics for another 
representative set of small molecules with experimental results. We can see that the 
quality of the averaged shielding constant and the tensor components is comparable 
for any given molecule. Thus, we get in general good agreement between theory and 
experiment. However, we note large deviations between the calculated and 
experimental shielding anisotropics for those molecules (notably CO out of the given 
list) where the calculated shielding constant isn't reliable either. Note that the 
magnitude of the anisotropy can exceed the shielding constant considerably, Table Π. 

Table IL Calculated and Experimental Shielding Constants and Anisotropics 
M o î ë c û î ë ^ t ô î î ^ -

Isotropic Shielding Shielding Anisotropy 
DFT-GIAO* Experiment DFT-GIAO 3 Experiment 

H2 H 26.46b 26.26±1.5 1.64b 2.0C 

HF F 412.5 410 104.2 108 

NH3 Ν 262.0 264.5 -48.1 -40 

CO2 C 56.1 58.8 345.9 335 

HCN C 91.5 82.1 286.1 284.6±20 
N 8.4 -20.4 502.9 563.818 

CO C -9.3 1.0 424.1 406 
Ο -68.4 -42.3 718.7 676.1 

Reference 6a. h LDA. c Calculated with the Coupled Hartree-Fock method 

XC Functionals. In Table I I I we look at the influence of the XC functional on the 
calculated shielding constants. By comparing results of first and second generation 
DFT (LDA and LDA/NL, respectively) with experiment, we note a remarkable 
improvement for the latter method for all non-hydrogen nuclei (up to 57 ppm change 
for H2CO). Malkin et al. had observed a similar strong influence for their DFT-
IGLO method (3a,b), Table ΠΙ. We have also included into Table m the results of 
the "coupled DFT-IGLO" approach of the same authors (3a,c,e). The idea of this 
approach is to model the current dependency of the XC potential (which is neglected 
in the "uncoupled" methods) by introducing a first order change into it. The authors 
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do this in a somewhat ad hoc fashion. The influence of the new coupling is negligible 
in many cases. However, it leads to a significant reduction of the absolute value of 
the shielding and therefore to better agreement with experiment for some of the 
"difficult" molecules like F2 or H2CO, Table ΙΠ. The influence of the XC functional 
can be traced back to well-known changes in the differences of the orbital energies, 
eq. 5, between occupied and low lying virtual MO's (6a). The influence of these 
small changes is therefore less pronounced in singly bound systems with large 
HOMO-LUMO separations, Table ΠΙ. 

The term "uncoupled" DFT is somewhat misleading, since even this level of 
theory accounts for correlation effects, and only contributions of the induced current 
to the correlation are neglected. Uncoupled Hartree-Fock theory on the other hand 
excludes correlation effects completely. 

T a W j ^ n ^ ^ T h ^ I i ^ 
Molecule/ 
Atom 

Isotropic Shieldings (ppm) 

DFT-GIAOa DFT-IGLO Exp. 

LDA LDA/NL 
Uncoupled1* 
LDA LDA/NLC 

Coupledc>d 

LDA/NL 

Exp. 

NH3 Ν 267.2 262.0 259.3 253.4 253.3 264.5 
Η 31.2 31.6 30.8 31.2 31.2 32.43 

HF F 415.1 412.5 412.7 409.0 409.6 410 
H 29.4 30.0 29.1 29.7 29.6 28.7 

N2 Ν -83.2 -72.9 -86.7 -78.9 -69.3 -61.6 

C2H2 C 102.9 110.4 102.5 108.9 109.6 117.2 

F2 F -310.2 -293.7 -271.8 -250.6 -197.8 -232.8 

H2CO C -31.7 -15.7 -40.4 -26.6 -12.3 -8.4 
O -475.8 -418.8 -504.7 -455.6 -362.6 -312.1 

a Reference 6a. b Ref. 3a. c We cite the results for the same LDA/NL functional as in our DFT-GIAO 
method. d Ref. 3b. 

Frozen core approximation. For heavier elements one might wonder to what degree 
it is possible to make use of the frozen core approximation in which orbitals of lower 
energy are taken from atomic calculations. The extension of the shielding 
calculations (eqs. 3 to 7) to include the frozen core approximation has been discussed 
in detail earlier (6b). Here, we address this question in connection with calculated 
7?Se shieldings in Table IV. The core at the selenium atom contains the Is, 2s, and 
2p shells while the core of the second period atoms carbon and fluorine contains the 
Is shell only. This choice was taken according to the discussion in reference 6b. 
The deviation in the calculated shielding between the frozen core results and the all 
electron calculations (numbers in brackets) is always smaller than 10 ppm, Table IV. 
We note also from Table IV that some of the deviation between the frozen core and 
all electron cases cancels when relative shifts are considered; the deviation does not 
exceed 5 ppm in this case. 

Let us now compare the calculated results to experimentally obtained values. The 
deviation between theory and experiment is considerable for all the ^^Se shieldings, 
Table IV. However, we get a much better agreement between theory and experiment 
when we consider relative shifts instead of absolute shieldings, Table IV. The 
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334 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

experimental accepted standard for ??Se shifts is liquid Dimethyl Selenide, 
(CH3)2Se. We have therefore included this compound into our investigation. 

The agreement between theory and experiment is good for 7?Se shifts for the few 
compounds that have been considered here. The experimental uncertainty is certainly 
large, as are gas-to-liquid shifts and solvation effects. The former are as big as 119 
ppm for H2Se. Solvent and counterion effects amount to a shift range of 25 ppm in 
the example of the cyclic tetra selenium dication, Table IV. Calculated shieldings 
refer of course to a single molecule at zero temperature whereas all the experimental 
data is obtained at finite temperatures and pressures; most of the experiments were 
carried out in solution or neat liquids. Al l these effects can yield considerable shifts, 
and make a direct comparison between theory and experiment difficult. On the 
theoretical side, it is likely that our basis sets are not yet completely saturated. 

Table IV. Calculated and Experimental 7 7 S e Shieldings and Shifts for a few 
Molecules (Numbers in ppm) 

chemical shift molecule absolute shielding 
exp. calculated3 

lCH3)2Se, 2Ô09 1,666 
(C2V) (1,673) 
H2Se 2,401 2,093 

(2,096) 
SeF6 1,438 988 (992) 

CSe2 1,738 1,441 

Se4 2 + 

(1,448) 
Se4 2 + -170 

experiment15 calculated* 
TT^ Ô (6) 
-345 (g) -427 (-423) 
-226 (1) 
610(g) 678 (681) 
631 (1) 
331 (g) 225 (225) 
299 (sol) 
1,923-1,958 1,836 
(sol)c 

aCalculated shieldings from frozen core calculations and (in brackets) from all electron calculations. 
- gas phase; 1 - liquid; sol - solution. cResult depending on solvent and counterion. 

A special case is the Se4^+ ion. This is a highly correlated molecule, and 
traditional Hartree-Fock based methods are unable to predict the chemical shift for 
this ion. However, the DFT result compares well with experiment; DFT is indeed 
capable of handling such systems. 

Let us now come back to the absolute shieldings. We note that the calculated 
absolute shieldings seem to be uniformly too small by about 300 ppm, Table IV. The 
experimental absolute shielding scale is based on the absolute shielding of SeF6 that 
was found to be 1,438164 ppm. However, this value is based on a theoretically 
predicted (diamagnetic) shielding value of the free selenium atom. This theoretical 
value has been corrected explicitly for relativistic effects, in particular the relativistic 
contraction of the core density. Other relativistic effects are probably not yet 
important for ??Se chemical shifts. The magnitude of the necessary correction is 
estimated at 300 ppm. Therefore, we find that our calculated shielding values are 
uniformly too small by about 300 ppm, Table IV. This uniform error of 300 ppm 
cancels of course when (relative) chemical shifts are calculated. This point illustrates 
the importance of absolute shielding scales for the test of theoretical methods. 

Transition Metal Complexes. The Example of Cr(CO) 6 , Mo(CO) 6 , and W(CO) 6 . 
Table V displays calculated (6c) and experimental absolute 1 3 C NMR shielding 
tensor components for the three hexacarbonyls M(CO)6 (M=Cr, Mo, and W). A 
similar compilation is given in Table V I for the n O shielding. The calculated and 

observed tensor components ass (s = x, y, z) compare well for both 1 3 C and 1 7 0 , with 

differences within the experimental error limits. The ass tensor components in 
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Tables V and V I correspond to an orientation in which the C O ligand probed by NMR 
has the 1 3C 1 7 0 bond vector along the z-axis. 

Table V . A Comparison between Experimental and Calculated1 Absolute C 
Chemical Shielding Tensor Components for the C O Molecule and Group 6 
Metal Carbonyls 

System 

(exptf 
OyyPP 0 1 

(expt)' 
ο^ΡΡ™ 
( «q* f 

Anisotropy Δσ 
ppm 
(expt)* 

Isotropic 
shielding0 

σι ppm 
(expt)' 

Other woric* 
(Absolute Scale") 

CO -149.4 8 
(-1323 d ) 

-149.4 
(-132.3) 

273.6 
(273.4) 

423.0 
(406(8)11.4) 

•8.4 
(1.0 (sr)) 

CXCOfc -167.9 8 
(-167.6115 e ) 

-167.9 
(-167.6±15) 

264.2 
(255.4115) 

4323 
(423130) 

-23.9 
(-26.6115(8,1)) 

-20.4 

MoiCOte -164.0 8 
(-157.6115 e ) 

-164.0 
(-157.6115) 

266.4 
(260.4115) 

430.4 
(417130) 

-203 
(-17.6115) 

-19.4 

W(CO)6 
ReL h 

-161.5 8 
-149.6 h 

(-138.6*15°) 

-161.5 
-149* 

(-138.6115) 

272.1 
266.7 

(256.4115) 

433.6 
416.4 

(395130) 

-16.9 
-10.9 

(-6.6115(8.1)) 
-6.2 

<l 
aThe data originally reported in ppm relative to liquid TMS are converted to absolute shielding using 
the C absolute shielding scale in which σ( C in liquid TMS)= 185.4 ppm based on C in 

CO(molecular beam)= -42.3117.2 ppm, see Ref. 6c. b A o is defined as Δσ= o z z - l / 2 ( a x x - K T y y ) . Here 
Q 

the z-axis is pointing along the CO bond vector of the ligand probed by NMR. OJ = 1/3(σ + σ 
A A yy 

+0^). d , e Ref . 6c. fRef. 3f. gNon-relativistic NL-SCF calculation, see réf. 6d. hRelativistic NL-

SCF-QR calculation. Reference 6c. 

Table VI. A Comparison between Experimental and Calculated' Absolute Ο 
Chemical Shielding Tensor Components for the C O Molecule and Group 6 
Metal Carbonyls ^ 

System <*xxPPm 

(exptf 

<^yppm 

(expt)' (exptf 

Anisotropy 
AG ppm 

(expt)' 

Isotropic shielding 
ajppm 

(expt)' 

OO - 3 0 7 . 3 g 

(-267.6126(8^ 
-307.3 

(-267.6126(8r)) 
410.6 

(408.47126) 
717.9 

(676.1126(8r)) 

-67 .9 
(-42.7117.2) 

CKCO)6 - 3 0 2 . 8 g 

(-307.1110-20*) 
-302.8 

(-271.1110-20) 
373.9 

(401.9110-20) 
676.7 

(691110-20) 
-77.2 

(-59.1110-20) 
Mo(COfc - 2 9 3 . 5 g 

(-277110-20^) 
-293.4 

(-248.1110-20) 
362.5 

(386.9110-20) 
655.9 

(650110-20) 
-74 .8 

(-46.1110-20) 
W(CO)6 

Re/ 1 

-291.58 
- 2 6 8 . 3 h 

(-259.1110-20*) 

-291.4 
-268.2 

(-228.1110-20) 

359.9 
351.7 

(374.9110-20) 

651.4 
620.0 

(619110-20) 

-74.4 
-61.6 

(-40.1110-20). 

The experimental data originally reported in ppm relative to liquid H2O are converted to absolute 

shielding using the Ο absolute shielding scale in which σ( Ο in liquid Η2θ)= 307.9 ppm, see Ref. 

6c. W See Table V. 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
02

3

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



336 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

It is worth pointing out that the experimental and components should be 

equal for a single M(CO)6 molecule. That they are different must be attributed to 
crystal effects. 

A l l hexacarbonyls have observed absolute isotropic shieldings, σ,·, that are 
negative for 1 3 C as well as 1 7 0 . Further, σ,· decreases in absolute terms down the 
triad, with the largest drop at the 5d element tungsten. Carbon as well as oxygen are 
seen to be deshielded in Cr(CO)6 and Mo(CO)6 compared to free CO. In W(CO)6 
this deshielding is only marginal for carbon and changed to a shielding for oxygen. 
A l l the experimental trends are reproduced by the GIAO-DFT scheme after the 
inclusion of relativity (6d), Tables V and V I . Kaupp (30 et ai have recently 
published calculated isotropic 1 3 C shielding constants for several transition metal 
complexes based on their IGLO-DFT scheme. It follows from Table V that their 
calculated isotropic carbon shieldings for the hexacarbonyls are in good agreement 
with experimental values and our estimates based on the GIAO-DFT method. 

Outlook. DFT is particularly suited to deal with many-electron systems, e.g., 
transition metal complexes. We have given examples of this above. However, a 
proper treatment of heavier element compounds (e.g., 4d and 5d complexes) requires 
the inclusion of relativity. Work is in progress to introduce relativistic terms as well 
(6d). The frozen core approximation is an important step in this direction, see above. 
Once completed, the new program would for the first time allow to cover the 
complete range of multi-nuclear NMR by first-principle theoretical methods. 
Multinuclear NMR (1) is a field of tremendous and growing experimental 
significance. 

3. The Calculation of Spin-Spin Coupling Constants 

As the experimental field of multi-nuclear NMR increases in importance, the ability 
to provide theoretical calculations of NMR properties such as spin-spin coupling 
constants for a wide variety of systems is desirable. Semi-empirical theories are only 
reliable for analogues of already-understood systems, while traditional ab initio 
methods are constrained by the expense involved in treating electron correlation 
adequately. Density functional theory provides a third path between these two 
methods and is now often the method of choice for investigating inorganic systems, 
especially those containing transition metals. 

The ability to calculate NMR spin-spin coupling constants from density 
functional theory for such systems would be valuable. Work on DFT calculations of 
chemical shielding tensors in transition metal systems has already been discussed in a 
previous section. In the present section we address the calculation of nuclear spin-
spin coupling constants. 

General theory of nuclear spin-spin coupling. The theory of nuclear spin-spin 
coupling is well established; we review it here for the reader's convenience and to 
establish symbols and terminology. The reader may wish to consult one of several 
excellent reviews on the subject for further information (10,11 ). Nuclear spin-spin 
coupling is the interaction energy of two nuclear magnetic moments. It can be shown 
that the reduced spin-spin coupling constant Κ is the second derivative of the energy 

of the system with respect to the nuclear magnetic moments μΑ = γΑΛΙΑ : 

y ^ A x ^ B y 
(9). 
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It is a second-rank tensor but we shall concern ourselves here only with the isotropic 
part, K = (l/ tyiKja Λ-Κ^^-Κ^). The reduced coupling constant Κ is preferred in 
theoretical discussions over the ordinary spin-spin coupling constant J, 

J(A,B) = ΗγΑγΒΚ(Α,Β)/4π2 (10), 

because J is proportional to the product of the nuclear gyromagnetic ratios γΑγΒ 

while Κ is independent of the isotopic identities of the nuclei. Reduced coupling 
constants are expressed in SI units of 10 1 9 kg n r 2 s"2 A ' 2 throughout this paper. 

The general theory of second-derivative properties (12) tells us that for a pair of 
perturbations μ Α and μΒ , 

Η = H0 + μ Α ^ Α ) (11) 

then 

^ ^ H ^ M ^ <12)· 
i.e., in order to calculate second derivatives of the energy we need the first derivative 
of the wave function. In density functional theory we avoid explicit reference to the 
wave function and reformulate this in terms of the Kohn-Sham molecular orbitals 
(MOs) and the density constructed therefrom. A similar formalism is also the basis of 
the shielding calculation as outlined in an earlier section. 

There are four different terms in the non-relativistic Hamiltonian described by 
Ramsey (7): The diamagnetic and paramagnetic spin-orbit terms (DSO and PSO), the 
spin-dipolar term (SD), and the Fermi-contact term (FC). 

= H^ + H^ + Hfi + H^ (13) 

Each of these terms gives a separate contribution to the isotropic spin-spin coupling, 
and in the present work we evaluate the first three of these. The spin-dipolar term, 
however, is both complicated to implement and generally very small (10), so it is not 
dealt with in the present work. There are also two anisotropic contributions, one from 
the cross-term of the spin-dipolar and Fermi-contact interactions, one from the 
classical dipolar interaction of the nuclei, both of which we also omit. The well 
known (7) analytical form of the terms in eq. 13 as well as the details of the 
calculations discussed below have been given elsewhere (13). 

Spin-spin coupling constants of main group compounds. We have performed all-
electron calculations of spin-spin coupling constants on a range of test systems, using 
the local spin-density approximation and the triple-zeta valence, double-zeta core, 
doubly polarized basis described in reference 13. 

Coupling constants for the 10-electron hydrides are shown in Table VI I . The 
calculated geminal hydrogen-hydrogen couplings do not show the experimental trend 
across the row. The correct trend is reproduced in coupled Hartree-Fock (CHF) 
calculations (10), although the absolute magnitudes are very poor unless correlation is 
added (10). The approximate cancellation of the diamagnetic and paramagnetic spin-
orbit terms also appears in the CHF calculations, leading to the conclusion that the 
Fermi-contact term in these LDA calculations has the wrong behavior. 
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Molecule coupling FC Βδϋ total exp 

C H 4 2K(H,H) -.55 -.29 .31 -.53 -1.03 
N H 3 2 K(HJI) -.62 -.43 .50 -.69 -.87 
H 2 O 2 K(HJI) -1.03 -.59 .72 -.90 -.60 

C H 4 39.6 η .8 40.5 41.3 
N H 3 ! K(NJI) 50.6 .07 2.9 53.6 50 
H 2 O 1K(0,H) 41.4 .05 8.0 49.4 48 
HF 1K(F,H) 16.3 .05 18.1 34.4 46.9 

(proportionally) much better agreement with experiment, with the exception of 
hydrogen fluoride. Results for hydrogen fluoride can be substantially improved by 
going to a basis set with both triple-zeta core and polarization flexibility: The Fermi 
contact term then becomes 25.9, leading to a total coupling of 43.7, compared with an 
experimental value of 46.9. 

Table V M . Reduced Coupling Constants in some Second Row Hydrides 
Molecule coupling FC DSO PSO total 

S i H 4 2 K(H,H) .08 -.20 .11 -.01 
PH3 2K(H,H) -.77 -.12 .11 -.78 
H 2 S 2K(H,H) -.85 -.15 .18 -.82 
S i H 4 ^ ( C H ) 69.9 .0 -.1 69.8 
P H 3 ^(N.H) 25.3 .0 1.4 26.7 
H2S ^(Ο,Η) 16.8 .0 5.2 22.0 
HC1 ^(F .H) 3.7 .0 13.2 16.9 

exp 
.23 
-1.12 

84.9 
37.8 

32 

In the second-row hydrides shown in Table VI I I the geminal proton-proton 
couplings seem to have the correct experimental trend, but the lack of experimental 
couplings for H2S makes this uncertain. The one-bond couplings to hydrogen are 
affected by a shortfall in the Fermi contact term of some 10-20 units, which increases 
monotonically across the row. This is probably due to basis set inadequacies for the 
Fermi contact term, that are similar to those just described for hydrogen fluoride. 

In Table DC we observe that the hydrogen-hydrogen couplings are also poor in 
the simple hydrocarbons, but the carbon-proton one-bond couplings are in quite good 
agreement with experiment. Two-bond carbon-proton couplings are somewhat 
worse, as might be expected due to their small magnitude. The carbon-carbon 
couplings in the series ethane-ethene-ethyne are qualitatively reproduced. The spin-
dipolar term may be relevant to these couplings, particularly for C2H2. 

In Table Χ N2 and to a lesser degree CO are poor because the cancellation of 
different contributions is exceedingly sensitive to geometry. A similar geometry 
sensitivity may occur in CO2. The results for H2 are somewhat disappointing, but the 
overestimation of the Fermi contact term here is probably due to the local spin-
density approximation. 

The couplings to fluorine in C H 3 F are unsatisfactory; this is probably again due 
to an inadequate basis for fluorine. The large discrepancy for the C-F coupling is also 
partly due to the neglect of the spin-dipolar mechanism. The other couplings follow 
the trends just noted for other simple hydrocarbons: The proton-proton coupling is 
poor, but the carbon-proton one-bond coupling is just a few percent smaller than 
experiment. In general we note that any small coupling involving a balance of 
competing terms is liable to be poor for the usual reason that small errors in large 
numbers lead to a large error in their difference. There are additional problems with 
proton-proton couplings that seem to be associated with their small magnitude as 
well, but one-bond couplings involving heavy atoms are generally much larger and 
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therefore quite reliable. In these cases there is a common tendency for the calculation 
to underestimate the coupling. 

Table IX. Reduced Coupling Constants for some Light Hydrocarbons 
Molecule coupling F C DSO K O exp 

C H 4 2 K(HJi) -.55 -.29 .31 -.53 -1.03 
C2H6 2K(HJ1) -.66 -.24 .26 -.64 
C2H4 2 K(HJD .31 -.32 .32 .31 .21 

C 2H6 3K(UH) trans 1.23 -.26 .24 1.21 .67 
C2H6 3K(HJi) gauche .22 -.08 .08 .22 .67 
C2H4 3K(H,H)cis 57 -.09 .0-6 .54 .97 
C2H4 3K(H»H) trans 1.07 -.29 .23 1.01 159 
C2H2 3 K(IiH) .15 -.30 .36 .21 .80 
C H 4 *Κ(ΟΗ) 39.6 .1 .8 405 41.3 
C2H6 40.2 .2 .6 41.0 41.3 
C2H4 ^ ( C H ) 47.6 .1 .3 48.1 51.8 
C 2 H 2 ^(QH) 79.5 .1 0.0 79.1 82.4 

C2H6 2K(C,H) -.6 -.1 .1 -.6 -1.5 
C2H4 2K(C,H) 1.3 -.2 -.4 .6 -.8 
C 2 H 2 

2K(C,H) 14.3 -.4 1.8 15.7 16.3 

C2H6 1K(C,Q 39.6 .2 .1 39.8 45.6 
C2H4 ^ ( C C ) 1035 .1 -13.3 90.3 89.1 
C2H2 !K(C,C5 262.2 .0 7.5 269.7 226.0 

Table X . Reduced Coupling Constants in some other First-row Compounds 
Molecule coupling FC DSO PSO total exp 

H 2 !Κ(Η3) 28.0 -.1 .3 28.2 23.3 
N 2 1K(N,N) 39.0 -.3 -39.0 -.3 -20.0 
OO IK(C.O) -29.1 -.2 -37.2 -66.6 -40.1 
0 0 2 ^(CO) -41.4 .2 -11.7 -53.0 -39.4 

C H 3 F 2 K(HH) -.23 -.25 .24 -.23 -.80 
C H 3 F mem 46.8 .2 .1 47.1 49.4 
C H 3 F ! K(CJ0 -106.1 .2 13.8 -92.2 -57.0 
C H 3 F 2 K(FJD 1.88 -.12 1.22 2.94 4.11 

Transition metal carbonyls. We have carried out calculations on a series of three 
transition-metal complexes for which experimental couplings are known. One can 
see instantly from Table X I that a single contribution (the Fermi contact term) 
dominates the calculated couplings, and so there is reason to believe that the total 
couplings will reflect reality. This is confirmed by comparison with experiment. 

Table X L Reduced Coupling Constants in Three Transition Metal Carbonyls 
Molecule coupling F C K O PSO total exp 

[V(00)d- ! Κ ( ν , 0 133 .3 -.6 127 146 
FeCOs ^(Fe.Cax) 206 .4 -.28 178 239 
FeC05 ^(Fe^eq) 246 . 3 -9 237 239 
[Co(CO)4]- lK(Co,C) 354 .3 -Λ 353 40Q±20 

The reduced coupling constant increases going across the periodic row, and the 
calculated couplings are approximately 15 % smaller than experiment. This suggests 
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that further calculations of transition-metal coupling constants should be feasible. 
The remaining error could be due to the approximate density functional, geometry, 
vibrational averaging, neglect of the spin-dipolar mechanism, or some combination of 
these. 

4. Conclusions 

We presented a modern implementation of the GIAO method for the calculation of 
the shielding tensor using DFT. The calculated shielding constants and tensors agree 
well with experimental results; the quality is certainly comparable with the results of 
other theoretical methods. However, the results for some strongly correlated systems 
are not yet satisfactory. The paramagnetic shielding contribution of these systems is 
very large and is generally overestimated in magnitude. Our method has also been 
applied to heavier elements such as 7?Se, as well as to the 1 3 C and 1 7 0 shifts in metal 
carbonyls. The DFT-GIAO scheme is capable of handling even highly correlated 
systems like Se4^+. 

We conclude from the previous discussion that the current state of affairs does 
not yet allow to decide how to improve DFT methods for the calculation of shielding 
tensors: The reason of the observed errors for some systems might be that our XC 
functionals are inappropriate for a precise description of the orbital energies. I f this is 
the case, then "next generation" XC potentials should be able to fix the problems. 

We have demonstrated that density-functional calculations of NMR spin-spin 
coupling constants are feasible on transition metal compounds using Slater-type basis 
functions. Basis set requirements for the Fermi-contact term are stringent in some 
cases, as they are with Gaussian-type basis functions. Furthermore, contributions 
from core orbitals of the responding nucleus in the calculation of the Fermi-contact 
term can be significant, although use of the frozen core approximation on the 
perturbing nucleus may still be practical. 

With a triple-zeta doubly polarized basis (13) set, we find that couplings between 
heavy atoms can be calculated with a typical error of less than 15 %. Larger errors 
may occur (i) when the coupling constant has contributions of differing sign from the 
various mechanisms, (ii) when basis set requirements are more stringent, as for 
fluorine and chlorine, (iii) when the Fermi-contact term is less than about l x l O 1 9 

kg n r 2 s"2 A" 2 as in most proton-proton couplings, and (iv) when the spin-dipolar 
mechanism (neglected here) is significant. 

The local spin-density functional used here has been superseded in some 
applications by gradient-corrected density functionals, but preliminary calculations 
have revealed no meaningful improvement in results for the spin-spin coupling with 
the more expensive gradient-corrected exchange-correlation potentials Vxc- We 
speculate that this is connected with the unphysical behavior of die common gradient-
corrected potentials near the nucleus. We anticipate that further studies of the 
exchange-correlation potential, as opposed to the exchange-correlation energy 
density, wil l yield significant improvements for properties such as the nuclear spin-
spin coupling constant. 
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Chapter 24 

Hybrid Hartree-Fock Density-Functional 
Theory Functionals: The Adiabatic 

Connection Method 

Jon Baker, Max Muir, Jan Andzelm, and Andrew Scheiner 

Biosym/Molecular Simulation, 9685 Scranton Road, 
San Diego, CA 92121-3752 

Drawing upon a large body of recent work covering a wide range of chemistry and 
comparing results obtained using local and nonlocal density functionals, as well as 
comparisons with traditional ab initio techniques such as Hartree-Fock and MP2, we 
demonstrate that hybrid HF-DFT functionals - exemplified here by Becke's original 3-
parameter ACM functional - are the best density functionals currently available, 
certainly for organic chemistry and possibly in other areas as well. Results with the 
ACM functional are typically of better quality than MP2 and only marginally more 
expensive computationally than standard Hartree-Fock, making ACM the method of 
choice for accurate, cost-effective ab initio computations. 

The use of Density Functional Theory (DFT) [1,2] for the calculation of 
molecular structures, properties and energetics has exploded during the past few 
years. There have been major advances in both theory - the development of nonlocal 
functionals (to better model the effects of rapidly changing densities near atomic 
nuclei) [3-5], the advent of analytical gradients [6-10] and second derivatives [11-14] -
and in the practical tools for applying the theory - computational codes such as DMOL 
[15], DGAUSS [16] and ADF [17] are now well established and are becoming 
increasingly more sophisticated; traditional ab initio packages such as GAUSSIAN 
[18], CADPAC [19] and TURBOMOLE [20] are including DFT capability as a major 
part of their functionality. In fact DFT has now become so prevalent and its 
applicability and the quality of its predictions so great that in the not too distant future 
it is likely to take over from Hartree-Fock (HF) as the "basic" ab initio technique. One 
has only to glance through the recent chemical literature to note the increasing number 
of publications with a DFT component and the growing number of groups doing work 
in this area. 

There are two major reasons for the increasing use of density functional 
methods in quantum chemistry. One - already mentioned in the proceeding paragraph -
is that the results are good. The second, and perhaps the most important reason, is that 
- certainly compared to the more accurate ab initio techniques - the method is fast. 
Depending on the implementation, DFT calculations range from being 2 or 3 times 
more costly than standard Hartree-Fock to an order of magnitude or more faster, with 
the relative speed advantage becoming even greater with increasing system size. Since 
DFT includes electron correlation, we have a method that is potentially much more 
accurate than traditional HF and yet is, at worst, no more expensive for large systems 
and can in fact be made many times faster. 

0097-6156/96/0629-0342$16.50/0 
© 1996 American Chemical Society 
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Some of the early successes of DFT are documented in the excellent review 
article by Ziegler [21] and the book edited by Labanowski and Andzelm [22]. A key 
paper that helped considerably in popularizing DFT methods, particularly amongst ab 
initio quantum chemists, was the study by Johnson, Gill and Pople of the performance 
of a number of density functionals [10]. These authors looked at geometries, dipole 
moments, vibrational frequencies and atomization energies of 32 small neutral 
molecules (a subset of the G2 data set [23]) with the 6-31G* basis set [24] and 
compared DFT with HF, MP2 and QCISD results. The findings from this work were 
that DFT geometries were slightly worse, dipole moments were at least as good, 
vibrational frequencies were on the whole better, and for atomization energies two 
density functionals - Β VWN and BLYP (combinations of Becke's nonlocal exchange 
[3] with Vosko, Wilk and Nusair's local correlation [25] and Lee, Yang and Parr's 
nonlocal correlation functional [5], respectively) - gave excellent agreement with 
experiment and were in fact the only acceptable theoretical methods. 

A notable success for DFT methods was the highly correlated molecule, 
FOOF. This is a system which is very difficult to get "right" by traditional ab initio 
methods, geometrical predictions are often at considerable variance with experiment 
and high levels of theory and large basis sets are needed to give reliable results. Using 
local DFT and a modest numerical basis, Dixon et al. obtained excellent agreement 
with the experimental F-O and O-O bond lengths [26]. 

Despite the success with FOOF, local DFT has been more-or-less discredited, 
at least for organic chemistry, due to its marked tendency to overbind, i.e., to make a 
molecule more stable relative to its separated atoms than it really is. This is illustrated 
in Table 1 which gives theoretical and experimental atomization energies for a number 
of systems (taken from ref. 10); as can be seen the local (SVWN) functional is 
consistently overbinding - denoted by the negative sign for the average and maximum 
errors - relative to experiment (although not as underbinding as the HF values, which 
are terrible). As noted by Johnson et al. [10], the nonlocal BLYP functional gives 
much superior results. 

Conventional wisdom has it that the nonlocal functionals in common use -
particularly BP [3,4] and BLYP [3,5] - typically give results of the quality of MP2 or 
better at a significantly reduced cost. However, let us not get too carried away. At the 
time of writing DFT methods cannot rival the most sophisticated ab initio methods -
such as configuration-interaction or coupled cluster techniques - for accuracy. 
Unfortunately, these methods are enormously expensive and are typically only used 
for benchmark calculations on relatively small systems. Virtually all of the standard 
post-HF methods for including electron correlation involve systematically improving 
the HF wavefunction (by including more and more excitations from the HF reference 
determinant for example); such methods for systematic improvement are currently 
unavailable in DFT - everything depends on the quality of the initial density functional. 

The design of increasingly accurate functionals has been - and will doubtless 
continue to be - an area of active research. We have already noted the development of 
nonlocal functionals (which involve the gradient of the density in their definition) 
which has been a major improvement. However, despite the quality of the results, 
more accuracy is needed in many cases to seriously rival the best ab initio methods and 
there are increasing signs that in certain areas even the best nonlocal functionals are 
seriously deficient. For example, Pople and coworkers have shown that conventional 
Kohn-Sham methods consistently and significantly underestimate the barrier for the 
reaction H + H 2 - > H 2 + H; in particular, LDA in unmodified form fails completely, 
predicting H 3 to be a stable species [27]. Negative barrier heights have been reported 
for certain reactions, and although this mainly seems to be a problem with local DFT 
there does appear to be a general trend emerging for even nonlocal DFT barriers to be 
perhaps too low and this could be a major problem for radical reactions in particular 
[28]. There have also been quite dramatically different predictions of the energy 
ordering in larger systems between, e.g., MP2 and nonlocal DFT; for example in the 
relative stabilities of isomers of C2o calculated using MP2 and BLYP [29]. Despite the 
many successes, there is clearly a need for more accurate and reliable fiinctionals. 
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Table 1 
Atomization Energies for some small molecules (kcal/mol) 
(theoretical values with the 6-31G* basis; taken from ref.10) 

compound H F M P 2 Q C I S D S V W N a B L Y P Expt. 
H 2 

75.9 86.6 91.2 107.5 103.2 103.3 
C H 4 300.4 354.2 353.9 436.8 389.9 392.5 
N H 3 170.2 232.4 230.7 306.0 270.1 276.7 
H 2 0 131.7 188.8 183.7 240.8 207.3 219.3 
H P 82.1 118.2 114.0 146.2 124.4 135.2 
C 2 H 2 271.9 365.6 351.2 438.6 383.4 388.9 
C 2 H 4 394.2 489.4 481.7 600.9 528.1 531.9 
C 2 H 6 506.0 608.5 603.1 752.1 660.9 666.3 
H C N 184.9 287.3 269.7 346.5 306.2 301.8 
C O 168.3 254.3 237.4 293.4 257.4 256.2 
H 2 C O 237.8 335.5 321.9 417.6 361.8 357.2 
C H 3 O H 331.5 434.8 425.3 551.2 475.3 480.8 
N 2 105.1 212.1 192.3 257.3 231.3 225.1 
N O 46.4 134.8 124.8 193.8 162.8 150.1 
o2 

28.9 117.6 99.0 174.6 136.8 118.0 
H 2 0 2 109.4 219.6 206.8 310.4 252.8 252.3 
C 0 2 234.7 381.0 347.8 464.3 392.9 381.9 
F 2 -34.3 36.8 27.9 83.6 54.4 36.9 

av.error 107.2 23.2 34.0 -47.1 7.2 
max.error 160.3 57.8 63.2 -85.8 18.8 

SVWN consistently overbinding as shown by the negative value for the average 
and maximum error; HF (especially), MP2 and QCISD are consistently underbinding. 
BLYP is neither. 
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Very recently a new class of DFT functionals is becoming popular - hybrid 
HF-DFT functionals which mix part of the "exact" Hartree-Fock exchange in with the 
density functional. These functionals derive from ideas expounded by Becke based on 
a rigorous ab initio formulation of the Kohn-Sham exchange-correlation energy 
known as the "adiabatic connection" formula [30]. One of the strict "limits" of this 
formula is the pure exchange-only energy of the Kohn-Sham determinant with no 
dynamical correlation whatsoever; this is essentially identical to the conventional 
Hartree-Fock exchange energy. 

One way of looking at DFT, which is particularly appropriate for our 
purposes, is to treat the Kohn-Sham equations in the same manner as in standard 
Hartree-Fock with a Fock matrix given by [10] 

F = H + J + K « (1) 

where H and J are the usual one- and two-electron Coulomb matrices and the 
exchange-only Κ matrix in HF theory has been replaced by a DFT exchange-
correlation matrix K«c. 

Becke has argued that "traditional" (if we may call them that) density 
functionals, including gradient-corrected, in which the HF exchange energy is 
replaced entirely by the DFT exchange-correlation energy, no matter how sophisticated 
they become, will not be able to correctly reproduce the exchange-only "limit" of the 
adiabatic connection formula, and the way to rectify this is to mix in part of the "real" 
exchange, or - in other words - not replace all of Κ by K«c but leave part of the 
original Κ behind. This may also be related to the well known problem in DFT of the 
so-called Coulomb "self-interaction" of the electrons, a problem that is eliminated in 
Hartree-Fock theory due to an exact cancellation of Coulomb and exchange integrals. 

The hybrid (ACM) functional proposed by Becke in ref.30 is a linear 
combination of various density functionals together with a term representing the exact 
exchange 

E " = E x c

s v w n + ao(E* h f - E* 8 v w n ) + a x A E \ 8 8 + a c A E c

p w 9 1 (2) 

Here E x c

s v w n is the total (local) SVWN exchange-correlation energy [25], EV is the 

Hartree-Fock exchange energy, E x

s v w n is the (local) Slater exchange, AE X
B88 is 

Becke's 1988 (nonlocal) correction to the exchange energy [3] and AE c

p w 9 i is Perdew 
and Wang's 1991 (nonlocal) correction to the correlation energy [4]. The coefficients 
ao, a x and ac, are empirical parameters determined by the best fit to the experimental 
data from Pople's G2 set [23]; they take values of 0.2, 0.72 and 0.81, respectively. 
Recently, Becke has developed another functional with only a single fit parameter (the 
amount of exact exchange included, which has increased to 0.28; see ref.31 and an 
independent article in this volume); however, all results reported herein are with the 
original ACM functional as given in Eq.2. 

In this article we present a comparison of results obtained using local, nonlocal 
and the hybrid ACM functional, together with some HF, MP2 and other 
methodologies, focussing on geometries, energetics and barrier heights (including 
reaction profiles) for a number of chemical systems. Much of the work presented 
summarizes previous and pending publications from the (now disbanded) theory 
group at what was formerly Biosym; the work on hydrogen bonding is previously 
unpublished. Our contention - overwhelmingly supported by a large body of 
calculations - is that hybrid HF-DFT functionals - as represented here by the ACM 
functional - are overall the best density functionals currently available, certainly for 
organic chemistry and possibly in other areas too. 
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R E S U L T S 

1. O r g a n i c C h e m i c a l React ions 

We start by summarizing the results of a study of twelve "typical" small 
organic reactions, six closed-shell and six radical [32]: 

Closed-Shell (singlets^ 

vinyl alcohol — > acetaldehyde 
butadiene + ethylene — > cyclohexene 
s-tetrazine — > 2HCN + N 2 

trifluoromethanol — > carbonyl fluoride + HF 
ring opening of cyclobutene 
rotation in butadiene 

Radical (doublets^ 

FO + H 2 — > FOH + H 
OH + H 2 — > H 2 0 + H 
ring opening of cyclopropyl radical 
CH 3 + C 2 H 4 — > propyl radical 
CH 3 + H 2CO — > ethoxy radical 
H + HCCH — > H 2 + CCH 

The study looked at geometries, heats of reaction and barrier heights using 
semiempirical (MNDO, AMI) , traditional ab initio (HF, MP2) and density functional 
(BLYP, ACM) methods. No detail wil l be given here - we refer the reader to the 
original publication for a discussion of individual reactions [32] - instead we present a 
summary in the form of Table 2, which gives heats of reaction and barrier heights for 
all twelve reactions, and Table 3, giving average and maximum deviations from 
experiment for barrier heights, heats of reaction and bond lengths. Al l ab initio 
calculations used the 6-31G* basis set (with five pure as opposed to six Cartesian 
components in the d-polarization functions). 

As can be seen from Table 3, results with the ACM functional are overall 
clearly the best; they are significantly better than MP2, especially for barrier heights. 
Other conclusions reached in the study (bearing in mind the limitations of the 6-31G* 
basis set) were [32]: 

( 1 ) Barrier heights calculated with BLYP are almost always lower than 
barriers calculated with MP2, particularly for radical reactions. 
(For MP2 spin contamination in the underlying UHF wavefunction 
plays a large part in artificially raising the barrier; this problem 
is almost non-existent in DFT wavefunctions [33].) 

(2) BLYP barriers for radical reactions tend to be too low compared to 
experiment (Table 3). In particular, reactions with very low barriers 
may be erroneously predicted to have no barrier at all (e.g. OH + H 2 

and CCH + H 2 ). 

(3) ACM barriers tend to be higher than the corresponding BLYP barrier, 
particularly for radical reactions, and are typically in better 
agreement with experiment. For radicals, ACM barriers are still 
lower than with MP2. 

(keto-enol tautomerism) 
(parent Diels- Alder) 
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(4) Although giving at least as good energetics on average as M P 2 , there 
are some disturbing instances ( O H + H 2 ) where the B L Y P P E S shows 
"unusual" behaviour (such behaviour is not confined to the B L Y P 
functional). The A C M functional, which includes a portion of the 
exact exchange, appears to remedy the situation. 

(5) The A C M functional gives excellent geometries which are often in 
better agreement with experiment than M P 2 . B L Y P geometries are 
often poor with bond lengths that are typically too long. 

The "unusual" behaviour mentioned on the B L Y P O H + H 2 potential energy 
surface refers to the apparent negative barrier height for this reaction (Table 2). This 
anomalous result prompted an in-depth study of the reaction profde at various levels of 
theory, the results of which are presented below. 

2. OH + H 2 —> H20 + H 
The potential energy surface for this reaction was examined at H - 0 H - H 

distances between 1.0 and 2.1 A along a C s reaction path with a variety of density 
functionals, both local (Slater exchange only - Snull - and S V W N ) and nonlocal (BP, 
B L Y P and A C M ) , and compared to potential energy curves obtained at the H F , M P 2 
and CCSD(T) levels [34]. 

F u l l details are given in the original work [34] but essentially the interatomic 
Ο Η distance was varied from 1.0 to 2.1 A in 0.05 A steps, and at each fixed 
Ο Η distance a ful l geometry optimization in the space of al l remaining variables 
(within C s symmetry) was carried out. The resulting energy profiles, with the 
separated reactants O H + H 2 as the energy zero, are shown in f i g . l . The 6-31G* (5d) 
basis was used throughout. 

The reaction profiles are given on two plots: f i g . la shows the profiles for H F , 
M P 2 , CCSD(T) and A C M while the remaining density functionals (Snull, S V W N , B P 
and B L Y P ) are shown on fig. l b . In both cases the far right hand side of the profile -
at an interatomic distance of 2.1 A - essentially represents the reactants, while the far 
left - at an interatomic distance of 1.0 A - represents the products, H 2 0 + H . (This 
Ο Η distance is more-or-less the correct O - H bond length in water; the optimized 
H - H distance at this point - not shown on the plots - is very large (typically in excess 
of 2.0 A ) indicating we have essentially a separated hydrogen atom.) 

Within the limitations of the basis set used, we regard the C C S D ( T ) result to 
be "exact" and these calculations were done to give an ab initio "standard" against 
which the other methods could be compared. Thus we are looking for a barrier height 
of around 10 kcal/mol and a heat of reaction of around -10 kcal/mol (experimentally 
these values are ~4 and -14.6 kcal/mol, respectively). 

The two sets of profiles (figs, l a and lb) are clearly different. The standard ab 
initio procedures, along with A C M , al l show a definite barrier; it's too high with H F 
and too low with A C M - although fortuitously the A C M barrier is in excellent 
agreement with experiment (the heat of reaction is in excellent agreement with the 
C C S D ( T ) value) - but in all cases there is a clear barrier. None of the "pure" density 
functionals give any barrier at a l l . The local functionals (Snull and S V W N ) are 
attractive over the entire range of interatomic distances studied and predict a very 
exothermic reaction - clear evidence of overbinding; the two nonlocal functionals (BP 
and B L Y P ) are essentially flat in to 1.3 A after which they dip down to form the 
products. There is no barrier with D F T . 

Closer examination of the B L Y P profile shows there is a very slight "dip" 
around 1.9 A , with a corresponding "rise" around 1.4-1.5 A . This "rise" is still below 
the energy of the reactants and acts as a kind of "spurious" transition state - hence the 
predicted "negative barrier height" with this functional. 
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Table 2 
Heats of reaction (AHf) and barrier heights (EA) for 12 "typical" organic reactions 
(kcal/mol; see text and ref.32 for more details) 

M N D O 
1. Vinyl Alcohol -
E A 91.2 73.6 
A H f -7.4 -8.0 
2. Butadiene + Ethylene 
E A 49.7 23.7 
A H f -34.2 -36.1 
3. Tetrazine — > 2HCN + 

AMI H F M P 2 
> Acetaldehyde 

70.0 

B L Y P A C M Expt. 

E A 
A H f 
4. C F 3 O H 
E A 

55.4 
-17.8 -17.5 

--> Cyclohexene 
46.2 32.3 

-38.6 -35.5 
N 2 

A H f 
5. Cyclobutene -
E A 49.8 
A H f -11.4 
6. cis-Butadiene -

0.2 

97.5 72.6 71.3 40.5 
11.3 -24.3 -71.2 -72.4 

- > C F 2 0 + H F 
91.2 66.0 59.5 43.9 
16.7 6.4 15.9 11.9 

> trans-Butadiene 
35.5 45.2 35.9 
-2.1 -19.0 -13.5 

-> trans-Butadiene 
E A 0.2 1.1 2.7 3.0 
A H f -0.3 -0.8 -3.0 -2.6 
7. F O + H 2 —> F O H + H 
E A 41.3 21.0 36.1 22.0 
A H f 12.4 13.1 15.0 -1.5 
8. O H + H 2 —> H 2 0 + H 
E A 30.7 11.5 26.5 12.7 
A H f -9.8 -2.6 2.0 -16.9 
9. Cyclopropyl radical ---> AHyl radical 
E A 23.1 24.5 24.1 35.5 
A H f -25.2 -29.0 -34.6 -21.7 
10. Methyl radical + Ethylene —> Propyl radical 

48.7 
-16.1 

21.3 
-32.5 

29.9 
-39.6 

34.0 
12.5 

29.8 
-8.7 

4.0 
-3.8 

14.7 
16.9 

-0.8a 
-5.2 

18.1 
-32.6 

E A 13.7 
A H f -34.9 
11. Methyl radical 
E A 21.5 
A H f -3.6 
12. H + H C C H « 
E A 41.7 
A H f 40.0 

1.7 11.3 
-36.8 -20.7 

+ Formaldehyde 

52.3 
-15.5 

20.3 
-47.1 

47.8 
-28.7 

41.0 
15.8 

36.1 
-15.0 

3.5 
-3.5 

16.3 
12.9 

3.3 
-7.5 

24.7 
-26.8 

8.2 
-14.4 

> H 2 + 
30.4b 
30.4 

11.9 
-16.7 

C C H 
34.0 
22.3 

18.1 5.0 6.2 
-29.0 -20.8 -26.8 
—> Ethoxyl radical 
19.8 3.4 4.6 
-5.1 -11.1 -16.4 

51.0 
46.0 

25.7b 
25.7 

28.4 
27.8 

39.4 
-9.8 

25 

51.8 
-46.4 

45.1 
5.6 

32.9 
-8.2 

3.9 
-2.5 

17.4 
3.9 

3.95 
-14.6 

22.0 
-22.8 

7.9 
-25.5 

6.8 
-10.8 

22.2 

a negative barrier height with BLYP 
b no TS could be located for AMI and BLYP 
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Tab le 3 
Average and maximum deviations from experiment for barrier heights, 
heats of reaction and bond lengths for the compounds and reactions given 
in Table 2 6 

Barrier Heights fkcal/mnl- j2 reactions^ 
M N D O A M I 

Av.Error 23.4 9.3 
MaxJError 51.8 34^2 

Heats Of Reaction riccal/ιη^; 1Q reacting) 
M N D O A M I 

Av.Error 10.9 7.5 
Max.Error 57.7 22.1 

Bond Lengths (Angstrom^; π fr^ç,) 

^ M N D O A M I 
Av.Error 0.020 0.020 
Max.Error 0.165 0.091 

HF 
13.6 
30.6 

HF 
10.5 
24.8 

HF 
0.014 
0.065 

MP2 
9.9 

28.8 

MP2 
6.3 

26.0 

MP2 
0.010 
0.041 

BLYP 
5.9 

21.9 

BLYP 
5.9 

13.0 

BLYP 
0.015 
0.034 

ACM 
3.7 

12.9 

ACM 
6.8 

17.7 

ACM 
0.008 
0.022 
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Comparing the four methods that predict a barrier - HF, MP2, CCSD(T) and 
ACM (fig.la) - with the four that do not - Snull, SVWN, BP and BLYP (fig.lb) -
then it is surely more than simply coincidence that all of the methods that (correctly) 
predict a barrier include at least a portion of the exact exchange. None of the "pure" 
density functionals include any exact exchange and in our opinion the incorrect 
description for this reaction is primarily due to deficiencies in the (local) Slater 
exchange term. In many cases - including this one - the ACM functional, because it 
incorporates a portion of the exact exchange, is able to correct somewhat for the 
déficiences in the Slater exchange and provide a much better description of reaction 
profiles. 

The OH + H2 reaction is just one example of the marked tendency of "pure" 
density functional methods to give too low, or non-existent, barrier heights, especially 
for low-barrier radical reactions. The following hydrogen abstraction reactions 
involving methane also fail to give a barrier with DFT-only functionals [35] 

CH 4 + OH — > CH 3 + H 2 0 
CH 4 + CI — > CH 3 + HC1 
C H 4 + H — > CH 3 + H 2 

and there are likely to be many more. Problems are not confined to radical reactions 
only, for example Latajka et al. report that DFT-only methods give too low barriers for 
proton transfer reactions (e.g. the FHF anion); the results are much improved with 
hybrid HF-DFT schemes [36]. 

3. Fluoromethanes 

We are currently in the closing stages of a systematic density functional study 
of fluorination in methane, ethane and ethylene to determine whether DFT can 
accurately reproduce all the structural and conformational changes that occur following 
repeated fluorine substitution in these compounds [37]. There are several fairly subtle 
conformational effects (of order -1 kcal/mol) on fluorine substitution as well as some 
marked changes in geometrical parameters across a series. In the above-mentioned 
study we investigate geometries, dipole moments, rotational barriers and stabilization 
energies using semiempirical (MNDO, A M I , PM3), ab initio (HF, MP2) and density 
functional (SVWN, BP, BLYP, ACM) methods. Two basis sets were used in the 
study; 6-31G* and a much larger TZ2P basis [38]. We summarize below results for 
the fluoromethanes. An extensive series of mainly Hartree-Fock studies on 
fluorocarbons, including fluoromethanes, was published in the late 1980s by Dixon 
[39]. 

Table 4a shows C-F bond lengths for the fluoromethanes at all levels of theory 
studied along with experimental values (all taken from standard tables [40]). Table 4c 
gives calculated and experimental dipole moments and Table 4b gives incremental 
geminal stabilization energies (IGSTAB - the increase in thermodynamic stability of a 
geminal substituted system relative to the corresponding monosubstituted system); the 
latter can be derived from the isodesmic reactions: 

which lead to IGSTABs for fluorine in CH 2 F 2 , CHF 3 and CF 4 of -6.2, -10.7 and 
-12.4 kcal/mol, respectively [41]. 

One of the most well known fluorine substituent effects is the decrease in C-F 
bond length (and corresponding increase in bond strength) with increasing fluorine 

AH<>f (kcal/mol) 
2 CH 3F — > C H 4 + CH 2 F 2 

3 CH 3F — > 2 CH 4 + CHF 3 

4 CH 3F — > 3 CH 4 + CF 4 

-12.3 ± 4.3 
-32.2 ± 6.5 
-49.6 ± 8.4 

(3a) 
(3b) 
(3c) 
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substitution in fluorinated methanes, a trend that can clearly be observed in the 
experimental C - F bond lengths in Table 4a and the I G S T A B s in Table 4b. 

Theoretically, the semiempirical methods do a very poor job of reproducing 
this trend. C - F bond lengths do decrease with A M I and P M 3 but only very slightly 
and they actually increase with M N D O (except for C F 4 ) ; both M N D O and A M I fail to 
reproduce the experimental I G S T A B trend although the P M 3 results are good with an 
average error of only 1.2 kcal /mol, a value that is better than any of the ab initio 
calculations with the 6-31G* basis. 

A l l of the ab initio methods reliably reproduce both the C - F bond shrinkage 
and the increasing geminal stabilization, at least relatively. In absolute terms, H F bond 
lengths are too short and B P and B L Y P values too long. The best results by far for C -
F bond lengths are A C M / T Z 2 P with an average error of only 0.002 A ; next best are 
M P 2 / T Z 2 P and A C M / 6 - 3 1 G * , both with average errors of 0.004 A . The worst results 
in absolute magnitude are B L Y P / T Z 2 P which are systematically too long (by 0.028 A 
on average) although the bond length contraction across the series is well reproduced. 
For the stabilization energies, results with the T Z 2 P basis are clearly superior to those 
with the smaller 6-31G* basis; apart from S V W N / T Z 2 P the average error is less than 
1 kcal /mol in al l cases. Perhaps surprisingly, Hartree-Fock gives the best overall 
results, although B P and A C M are very close (average errors of 0.3, 0.3 and 0.4 
kcal /mol with the T Z 2 P basis, respectively). However, some caution is in order 
regarding the exact ordering, since the error bars on the heats of reaction (3a-3c, 
above) are rather large. 

For the dipole moments, once again the semiempirical methods are not 
especially successful at duplicating the experimental values or trend; all three methods 
predict that C H F j has a larger dipole moment than C H 2 F 2 whereas the reverse is the 
case experimentally. The calculated DFT/6 -31G* dipole moments are not much better; 
except for A C M the other three density functionals show C H 3 F with a larger dipole 
moment than C H 2 F 2 which is again the reverse of the experimental observation. A l l 
D F T dipole moments are consistently too low with this basis set. Both H F and, 
especially, M P 2 give much better results. 

The D F T results improve significantly with the larger TZ2P basis. Both B L Y P 
and A C M now give good agreement with experiment, with average errors of 0.04 and 
0.05 debye, respectively. Best of all is M P 2 / T Z 2 P , with an average error of just 0.03 
debye. Hartree Fock dipole moments actually worsen with the better basis, all values 
are now too high. 

Overall , the best theoretical method for reproducing the observed physical 
properties of the fluoromethanes that we have examined here is clearly A C M / T Z 2 P . Its 
nearest rival is MP2 /TZ2P . 

4. Oxides of N i t r o g e n 

Another study currently in progress is an investigation of the geometries, 
energetics and properties of various nitrogen oxides [42]. This study was undertaken 
following calculation of the heats of formation of N O , N 2 0 , N 0 2 , N 2 0 3 , N 2 0 4 , 
N 2 0 5 and N 0 3 using local D F T ; apart from N O all calculated values were exothermic, 
and dramatically so, in marked contrast to experiment (all the nitrogen oxides have 
endothermic heats of formation). This is shown in Table 5 which gives calculated 
heats of formation with various density functionals using a T Z 2 P basis along with 
experimental values and spin-projected M P 4 (based on I f f geometries) with a split-
valence + polarization basis. 

A s can been seen, for the six oxides of nitrogen shown, heats of formation 
with local D F T ( S V W N ) are al l exothermic and bear no relation at al l to experiment 
(the average error is a staggering 184.3 kJ/mol). There is a steady improvement on 
progressing to the nonlocal B P and B L Y P functionals, but even here the calculated 
values are always too exothermic; however results with die hybrid A C M functional are 
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Table 5 
Heats of formation of some nitrogen oxides (kJ/mol) 
(DFT calculations used a T Z 2 P basis; P M P 4 used a split-valence plus 
polarization basis. A l l calculated values include Z P V E corrections) 

compound S V W N B P B L Y P A C M P M P 4 Expt. 
N 2 0 -19.5 38.5 55.5 61.9 82.8 85.5 
N 0 2 -55.8 -2.7 10.9 21.4 35.7 35.9 
N 2 0 3 -89.9 30.5 45.5 82.1 112.8 82.8 
N 2 0 4 -254.7 -66.7 -35.7 -3.3 34.1 18.7 
N 2 0 5 -288.0 -50.3 -15.2 11.2 65.0 11.3 
N 0 3 -86.0 20.9 39.1 71.9 98.6 77.5 

av.error 184.3 56.9 35.4 11.1 20.5 

generally good, with a lower average error even than M P 4 (which is enormously more 
expensive, even with the smaller basis set). 

5. H y d r o g e n B o n d i n g 

A reliable description of hydrogen bonding is a challenge for theory due to the 
weakness of the interactions involved compared to, e.g., those in a conventional 
covalent bond. Effects such as basis set superposition error (BSSE) , which can 
normally be neglected, may need to be addressed, especially i f the basis used is not 
sufficiently large. A nice discussion of the various theoretical considerations involved 
in order to obtain accurate structures and energetics for hydrogen-bonded and other 
van der Waals systems is given in the review article by Chalasinski and Szczesniak 
[43]. 

There have now been several D F T studies of hydrogen bonding and the 
general conclusion appears to be that - with a reliable basis set - nonlocal density 
functionals can provide an adequate description of hydrogen bonding (e.g., see 
ref.44). However, a very recent article from De l Bene and coworkers [45] does 
suggest that, although results are generally good, care is required in the selection of a 
basis set, and M P 2 results are often better, even when compared against hybrid 
functionals. For very weak van der Waals dimers, Pulay has shown that current 
functionals fail to describe the dispersion interaction properly near the van der Waals 
minimum and has concluded that "present D F T theories are probably not useful for the 
investigation of weakly interacting systems" [46]. 

W e present here a study of three hydrogen-bonded systems: H F . . H F , 
C O . . H F and O C . . H F . We concentrate of the H F dimer as this has been extensively 
studied theoretically [47], including a recent D F T study [48], and there is reliable 
experimental data available for comparison. To the best of our knowledge there have 
been no previous D F T studies on C O . . H F and O C . . H F . Comparisons are made 
between H F , M P 2 , S V W N , B P , B L Y P and A C M . 

W e have used the same T Z 2 P basis that was used in our studies on the 
fluoromethanes and nitrogen oxides (subsections 3 and 4, above). Tests have shown 
that B S S E effects are small with this basis; consequently we have made no corrections 
for B S S E . Additional calculations on H F . . H F with a diffuse s function on hydrogen 
and diffuse s and p functions on fluorine had minimal effect on optimized geometries, 
so no extra diffuse functions were included in the basis. 
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Table 6a presents optimized monomer and dimer geometries, tables 6b and 6c 
show dipole moments and vibrational frequencies, respectively, and table 6d gives 
calculated dimer binding energies. Note that the latter are D e values, uncorrected for 
ZPVE (the harmonic approximation is often inaccurate for weakly bound complexes). 
The experimental binding energy reported for the HF dimer is the D 0 value obtained 
by Dayton et al. [49] corrected using the zero-point energy difference proposed by 
Racine and Davidson [46,47]. 

Looking first at the calculated quantities for the monomers (CO and HF) we 
see that once again ACM geometries are in excellent agreement with experiment (table 
6a). Hartree-Fock bond lengths are too short and BP and BLYP are too long. 

As is well known the Hartree-Fock dipole moment of CO has the wrong sign 
(the dipole vector points away from the Ο atom); all the correlated methods give the 
correct dipole direction with ACM giving the best agreement with experiment (table 
6b). The MP2 dipole moment is too high. For HF, all methods give reasonable dipole 
moments although the Hartree-Fock and SVWN values are a bit too high. 

It is well established that DFT, both local and nonlocal, gives fairly good 
agreement with observed vibrational frequencies [10,50]. However, this is somewhat 
fortuitous since what is typically compared are calculated harmonic and experimental 
anharmonic frequencies; what should be compared is clearly harmonic with harmonic. 
If this is done, then for both CO and HF, ACM gives by far the best results (table 6c). 

For the HF..HF dimer, most of the methods studied give fair to good 
agreement with the experimentally determined interatomic distances; a notable 
exception is SVWN which predicts a far too short intermolecular F-F distance and a 
correspondingly too large increase in the H-F distances compared to that in the 
monomer (table 6a). The calculated dimer binding energy is also too high (table 6d). 
This is a further manifestation of the overbinding tendency of local DFT. The inability 
of LDA to deal with hydrogen bonding has already been noted by Salahub and 
coworkers [51]. For the bond angles, although the FFHd angle is well predicted by 
almost all methods, the calculated FFH* angle is too low in all cases except Hartree-
Fock. Overall, MP2 gives perhaps the best agreement with die experimental geometry; 
however ACM is also very close and gives very similar geometrical parameters to 
MP2. 

The best agreement with the observed vibrational frequencies for HF..HF is 
with the BP nonlocal functional, closely followed by BLYP (table 6c). However, we 
again reiterate that we are comparing calculated harmonic with experimental 
anharmonic frequencies. Harmonic frequencies should always be higher than 
anharmonic and we note that the only methods for which the calculated frequencies are 
consistently higher than experiment are MP2 and ACM; these two methods are in fact 
in fairly good agreement with one another. We would conjecture that if experimental 
harmonic frequencies were available for the HF dimer, the best agreement would be 
provided by ACM. Although the unsealed Hartree-Fock frequencies give the worst 
agreement with experiment, i f the usual scaling factor of 0.89 is employed then the 
average (scaled) error falls to 30 cm-l due to the much improved agreement for the two 
highest modes. 

There is very little experimental data available for the CO..HF dimers. A 
microwave study in the early 1980s led Legon and coworkers to conclude that the 
dominant species present in the gas phase was OC..HF, which was linear with an 
average C-F distance of 3.047 A [52]. 

Al l theoretical methods predict OC..HF to be more stable than CO..HF, 
although the difference is not particularly marked at the Hartree-Fock level. Overall, 
the best agreement with the limited experimental data is given by MP2 with again the 
ACM results being very similar. As with the HF dimer, SVWN is too binding. 

One cannot draw any firm conclusions from such a limited study, but the ACM 
functional does appear to give results very comparable to MP2 and generally better 
than the other density functionals examined here. 
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Table 6a 
Monomer and dimer geometries for dimers of HF and CO 
(Angstroms and degrees; all calculations used a TZ2P basis set) 

compound HF MP2 SVWN BP BLYP ACM Expt. 

rCO 
rHF 

1.103 
0.898 

1.135 
0.918 

1.128 
0.932 

1.136 
0.929 

1.138 
0.933 

1.124 
0.920 

1.128 
0.917 

C O . . H F 
rCO 
rHF 
rOH 

1.105 
0.900 
2.150 

1.135 
0.919 
2.165 

1.130 
0.937 
1.820 

1.137 
0.931 
2.160 

1.138 
0.935 
2.157 

1.126 
0.921 
2.169 

O C . . H F 
rCO 
rHF 
rCH 
av. rCF 

1.100 
0.901 
2.277 
3.178 

1.132 
0.925 
2.057 
2.982 

1.123 
0.950 
1.797 
2.747 

1.132 
0.941 
1.996 
2.937 

1.133 
0.943 
1.994 
2.937 

1.121 
0.929 
2.022 
2.951 3.047 

H F . . H F 
rFF 2.810 2.719 2.548 2.740 2.741 2.720 2.72-2.79 
rFHd 0.902 0.924 0.948 0.938 0.942 0.927 0.921 
rFHa 0.901 0.922 0.937 0.933 0.937 0.923 0.919 
aFFH* 119.8 108.9 99.2 105.5 105.5 108.8 117 + 6 
aFFHd 6.9 7.9 9.4 8.1 8.1 7.6 7-9 

Table 6b 
Calculated dipole moments for HF, CO monomers and dimers (debye) 

compound HF 
CO -0.15 
HF 1.94 
CO..HF 2.48 
OC..HF 2.23 
HF..HF 3.58 

MP2 SVWN BP 
0.28 0.22 0.19 
1.88 1.91 1.85 
1.99 2.37 2.08 
2.79 3.05 2.78 
3.34 3.36 3.28 

BLYP ACM Expt. 
0.15 0.12 0.11 
1.86 1.88 1.82 
2.14 2.15 
2.75 2.69 
3.30 3.37 

Continued on next page 
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Table 6. Continued 

Table 6c 
Calculated harmonic vibrational frequencies for CO, HF and HF..HF (cm-1) 

compound HF MP2 SVWN BP BLYP ACM obs. har. 

CO 2422 2119 2373 2121 2108 2215 2143 2170 
HF 4470 4160 3990 3986 3930 4127 3963 4139 

HF..HF 4434 4113 3918 3940 3886 4087 3930 
4385 4034 3677 3769 3758 3963 3868 
511 597 758 610 607 599 510 
438 495 584 493 481 490 400 
198 221 296 234 222 223 216 
139 168 187 162 167 164 150 

av. error 177 92 125 55 59 75 

Table 6d 
Calculated dimer binding energies (kcal/mol) 

compound HF MP2 SVWN BP BLYP ACM Expt. 
CO..HF 1.6 1.5 3.9 0.8 1.6 1.1 

Expt. 

OC..HF 2.3 4.1 8.4 3.7 4.2 3.6 
HF..HF 4.1 5.0 9.3 4.3 5.3 4.5 4.8 ± 0.2 

6. DFT V a l i d a t i o n Study 

Finally we present some preliminary results from a systematic density 
functional study of the geometries, ionization potentials and dipole moments of over 
100 small to medium-sized molecules (ranging in size from 2 to 9 atoms) and the 
energetics of over 300 reactions involving these molecules (corrected for ZPVE) 
which we have recently completed [53]. The study encompasses both local, nonlocal 
and hybrid (ACM) functionals with a range of Gaussian basis sets from split-valence 
+ polarization to large uncontracted correlation-consistent, containing f functions on 
first and second row atoms and d functions on hydrogen [54]. Calculated values are 
compared with experiment and with traditional HF and MP2 techniques. Some of 
these results have been presented elsewhere [55], but only for a subset of our total 
data base. 

A full list of the molecules in our data set is given in Table 7. Again, no detail 
of individual molecules and reactions are given; instead we present a summary of the 
average errors for all bond lengths and the average error in the calculated heats of 
reaction for the over 300 reactions examined (including atomization energies, 
hydrogénations, oxidations and miscellaneous) as compared to experimental values. 
For more details see refs. [53,55]. 
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Fig.2 shows the average error in bond length plotted against (increasing) basis 
set size. The figure is self-explanatory and clearly shows that the ACM functional 
consistently provides better average geometries than all the other functionals examined 
(SVWN, BP and BLYP) for all basis sets. For the larger triple-zeta quality bases, the 
average error in the calculated bond lengths is less than 0.01 A. The greater relative 
accuracy of ACM is particularly noticeable with the smaller double-zeta basis sets. 
Note that local SVWN geometries are usually better than nonlocal and BLYP 
geometries are clearly and consistently worst of all, with an average error greater than 
0.02 A for almost all basis sets. For the 6-31G** basis, both HF and MP2 averages 
are given; MP2 geometries are on the whole better than "pure" DFT geometries but 
clearly inferior to ACM. 

Average errors in calculated reaction energies are plotted in fig.3a and, on an 
expanded scale for the nonlocal functionals, fig.3b. Again ACM is clearly superior to 
the other methods; the average error with the TZ2P basis approaches 6 kcal/mol for 
ACM, compared to over 7 kcal/mol for BP and almost 8 kcal/mol for BLYP (fig.3b). 
Al l the nonlocal functionals are markedly better than (local) SVWN for which the 
average error is around 25 kcal/mol and shows almost no improvement as basis size 
increases. With the 6-31G** basis, all the nonlocal functionals show better average 
energetics than MP2; HF is clearly worst of all with an average error of over 50 
kcal/mol! Note that the DZVP and TZVP bases were specifically optimized for DFT 
[56] (unlike all other basis sets which were optimized for HF or HF-based 
waveftmctions) and the fact that the BP and BLYP energetics show a clear relative 
improvement in these cases suggests that effort directed towards basis set optimization 
for the ACM functional ought to prove rewarding. 

7. Organometallics 

Almost all of the work presented above involves typical small to medium-sized 
"organic" systems. Although we have done only limited work to date on systems 
involving transition metals, there is increasing indication in the recent literature that 
hybrid HF-DFT schemes provide improved accuracy relative to standard nonlocal 
functionals for organometallics as well. We quote just a few examples below. 

In a study of the successive binding energies of Fe(CO)5+, Ricca and 
Bauschlicher [57] found that although the BLYP functional alone gave very poor 
results, the hybrid B3LYP functional (this is similar to the ACM functional as defined 
in Eq.2, except that the Perdew 91 correlation functional (PW91) is replaced by the 
LYP functional) gave excellent results, better than those obtained from a modified 
coupled-pair approach (MCPF); additionally B3LYP gave better geometries and 
frequencies than MP2 and these authors opined that B3LYP might be the "method of 
choice for all but highly accurate calculations on small systems containing transition 
metals". Further studies on Co(H 2) n+ [58] and V ( H 2 ) n

+ [59] confirmed the reliability 
of the hybrid functional. 

Similarly in a study of cationic transition-metal methyl complexes MCH3+ 
(M=Sc-Cu,La,Hf-Au) which specifically examined the performance of hybrid HF-
DFT functionals, Holthausen et al. concluded that such methods were "a promising 
alternative to rigorous high level ab initio theory, at least for a description of the 
electronic structure of singly bonded open-shell transition metal complexes" [60]. An 
essentially similar conclusion was drawn by the same group in a related study of the 
bonding in cationic first-row transition metal methylene complexes MCH2+ [61]. 
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S U M M A R Y 

In this article we have attempted to show that, for a wide range of chemical 
systems, better predictions on average for molecular structures and energetics (and 
also certain molecular properties) are obtained with hybrid H F - D F T functionals - such 
as A C M - than with "DFT-only" functionals, both local and nonlocal, or with standard 
ab initio procedures, such as H F and M P 2 . Our summary of the current state-of-the-
art in density functional applications is: 

1. Local density functionals give reasonable geometries and 
vibrational frequencies but energetics (heats of reaction, 
barrier heights) are generally poor. Molecular stability is 
exaggerated due to overbinding. Weakly bound species in 
particular are poorly described by L D A . 

2. Nonlocal functionals usually give much improved energetics 
(typically of the same quality or better than MP2) but geometries 
for standard covalent systems are often worse, particularly for 
B L Y P which gives bond lengths that are systematically too long. 

3. DFT-only barrier heights for low-barrier reactions are usually 
too low, or non-existent, especially for radical reactions. 

4. Functionals which include a portion of the true H F exchange 
(such as A C M ) provide significantly better results than standard 
nonlocal functionals. In particular 

* geometries are better than M P 2 
* heats of reaction are better than M P 2 
* barrier heights are better than M P 2 
* computational cost is much less than standard 

implementations of M P 2 

In conclusion, we would argue that hybrid H F - D F T functionals are overall the 
best density functionals currently available, certainly for organic chemistry and 
potentially in other areas of chemistry as well. 

Despite our glowing recommendation of the A C M functional, it is only fair to 
point out that currently it requires calculation of all the two-electron integrals in order 
to determine the H F exchange. This requirement means that, in terms of computational 
speed, it can never be faster than a standard Hartree-Fock calculation, whereas other 
non-hybrid D F T implementations - which do not need any H F exchange - can, by 
suitable approximations to the Coulomb term, be made much faster. For example, 
D G A U S S [16] uses a "resolution of the identity" approach, along with an auxiliary 
basis, to replace the four-centre two-electron coulomb integrals by products of three-
centre integrals which can be computed much more efficiently. D M O L [15] uses a 
purely numerical basis and solves the Poisson equations to approximate the Coulomb 
term; again this is theoretically much faster. O f course, for the A C M functional - and 
in similar implementations for other density functionals - since the two-electron 
integrals are calculated for the exchange term, then they are available "for free" so to 
speak for the Coulomb term, which can be determined with much greater accuracy. It 
remains to be seen i f a functional can be developed which can include the effects of 
"exact exchange" without having to "include" the two-electron integrals as well . 
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Chapter 25 

Copper Corrosion Mechanisms 
of Organopolysulfides 

Anne M. Chaka1, John Harris2, and Xiao-Ping Li2 

1Lubrizol Corporation, 29400 Lakeland Boulevard, 
Wickliffe, OH 44092-2298 

2Biosym/Molecular Simulation, 9685 Scranton Road, 
San Diego, CA 92121-3752 

Organopolysulfide lubricant additives are effective antiwear agents 
which protect ferrous metal components, but also cause corrosion of 
copper-based alloys such as bronze and brass in the same mechanical 
systems. In commercial organopolysulfides of the type R- (S) n -R , the 
corrosive behavior of polysulfides dramatically increases when n ≥ 4. 
Three possible reasons for this behavior are examined using local and 
nonlocal density functional theory as well as post-Hartree-Fock theory 
at the M P 2 level. In addition we present some of the first results using 
a new density functional program, Fast_Structure, based on the Harris 
functional. 

Organopolysulfide lubricant additives which effectively passivate and protect ferrous 
metals often corrode copper-containing metal alloys such as bronze and brass. This, is 
a serious limitation as ferrous and non-ferrous metals are commonly used to fashion 
different parts of the same mechanical system. The ultimate goal is to minimize the 
corrosive behavior of the additives while preserving their effective wear protection 
performance. In commercial organopolysulfides of the type R - S n - R , where «=2-6, 
the longer sulfide chains are known empirically to be much more corrosive with 
respect to copper than the shorter chains where η < 3. Currently little is known about 
the corrosion mechanisms involved which can explain this difference in reactivity. We 
propose three hypotheses in an effort to determine why the corrosive behavior of 
polysulfides dramatically increases when η > 4. The first hypothesis proposes that the 
S-S bonds are weaker and hence more reactive in the longer polysulfides. The second 
hypothesis suggests that the longer polysulfides are more corrosive because they are 
capable of removing copper atoms from the surface via a chelation mechanism. The 
third hypothesis considered is that the steric bulk of the hydrocarbon side chains can 
inhibit corrosion by limiting the contact of the sulfur with the surface in the shorter 
polysulfide chains, but not for the inner sulfur atoms in the longer chains. 

In this study we present some of the first results utilizing a new density 
functional program Fast_Structure (FS) (7), based on the Harris functional with trial 
densities constructed from spherically symmetric site-densities. These results are 
compared with Kohn-Sham (2) density functional theory with and without nonlocal 
gradient corrections, as well as post-Hartree-Fock results at the M P 2 level (3). 

0097-6156/96/0629-0368$15.00/0 
© 1996 American Chemical Society 
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M e t h o d o l o g y 

Polysulfides are linear molecules with dihedral angles of approximately 90°. 
Disulfides can exist in either d or / conformations, and polysulfides can form either 
right or left-handed helices. Chains with at least five atoms can be described as either 
cis or trans depending on whether the two terminal atoms are on the same or opposite 
side of the plane formed by the three central atoms. Fibrous sulfur S*, exists in the all -
trans conformation, forming a helical structure (4). In this study we use polysulfides 
in the all-irans conformation, analogous to S«,, and with twofold symmetry. Starting 
geometries for all neutral species in this study were obtained using Fast_Structure. 
Additional refinement was performed using Hartree-Fock self consistent field (SCF) 
theory and M P 2 methodology as implemented in H O N D O 94.8,(5) and Kohn-Sham 
D F T in D M o l 2.3.5 (<5). The functional used for the local density calculations is that 
of Vosko, W i l k , and Nusair (7). For the nonlocal density calculations we used 
Becke's gradient corrections to the exchange (8) and that of Lee, Yang, and Parr (9) 
for the correlation. A l l basis sets used are of double zeta plus polarization (DZP) 
quality, with Delley's numerical D N P for the D F T work (6), and Dunning and Hay 's 
D Z P (10) for the Hartree-Fock and M P 2 . A l l calculations on open-shelled systems 
were performed with spin unrestricted. 

Fast_Structure, a new program based on the Harris functional, numerical basis 
sets, and a novel optimization technique, can be very useful as a fast initial geometry 
optimization method without the difficulties associated with parameterization. For a 
detailed description of the methodology behind Fast_Structure and benchmark results, 
see the chapter by L i , et al, in this volume. 

To determine the utility of Fast_Structure for the polysulfide molecules in this 
study, a detailed examination of the geometry and potential surface, including planar 
rotational transition state structures, of H2S2 and H2S4 was performed. The results 
are presented in Tables I -V and Figure 1. For the equilibrium geometries of H2S2 and 
H2S4, Fast_Structure gives an H-S bond distance and dihedral angles which are 
indistinguishable from experiment. S-S bond distances are from 0.02 to 0.05 Â too 
long, but in between the values obtained by D M o l with and without nonlocal gradient 
corrections. There is good agreement with the SSS bond angle in H2S4, but a 5* 
difference with the HSS bond angle in H2S4. A l l of the other methods differ by more 
than 6° from the experimental value for the H S S angle, so the latter may be in some 
doubt. 

Tab le I. G r o u n d state geometry of H2S2 
F S 

( V W N ) 
D M o l 

(VWN) 
D M o l 

( B L Y P ) 
S C F M P 2 Expt. 

r(HS) A 
r(SS) Â 

1.348 
2.097 

1.371 
2.062 

1.387 
2.128 

1.338 
2.077 

1.337 
2.066 

1.35^ 
2.055 b 

<(HSS) 
<(HSSH) 

97.1° 
90.4° 

98.2° 
90.0° 

98.2° 
90.7° 

98.4° 
90.2° 

98.6° 
90.3° 

91.95° 
90.6° c 

a Ref . l l . b R e f . 12. 'Réf. 13. 

Examination of the planar rotational transition states in Tables Π and IV and 
Figure 1, reveals that Fast_Structure predicts the transition state structure geometry 
with the same accuracy as the ground state geometry relative to the other methods. 
Experimental values for the anti rotational barrier height about the unhindered S-S 
bond in H2S2 range from 1.9 to 6.9 kcal/mol (15-18), and Fast_Structure gives a 
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370 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Figure 1. (a). Ground and (b) planar rotational transition state geometry of 
H2S2. (c). Ground and (d) planar triple rotational transition state geometry of 
H2S4. 
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Table I L Geometry of H 2 S 2 Planar Transition State 
F S 

( V W N ) 
D M o l 

(VWN) 
D M o l 

( B L Y P ) 
S C F M P 2 

r(HS) A 
r(SS) Â 
<(HSS) 

1.348 
2.141 
91.2° 

1.365 
2.116 
92.1° 

1.365 
2.117 
92.2° 

1.330 
2.106 
94.4° 

1.333 
2.110 
93.2° 

Table I I I . Ground State Geometry of H 2 S 4 

F S 
(VWN) 

D M o l 
( V W N ) 

D M o l 
( B L Y P ) 

S C F M P 2 E x p t a 

r ( H - S l ) A 
r (Sl -S2)Â 
r(S2-S3) Â 

1.351 
2.084 
2.091 

1.370 
2.068 
2.059 

1.386 
2.139 
2.122 

1.338 
2.071 
2.071 

1.337 
2.064 
2.065 

2.03 
2.07 

<(HSS) 
<(SSS) 

<(HSSS) 
<(SSSS) 

95.6° 
105.7° 
85.3° 
77.4° 

97.4° 
108.7° 
83.3° 
82.9° 

97.3° 
111.0° 
84.4° 
87.8° 

98.1° 
105.9° 
84.0° 
79.5° 

97.9° 
106.6° 
84.3° 
78.9° 

105° 

78° 
a Ref . 14. 

Table I V . Geometry of H 2 S 4 Planar Transition State 
F S 

( V W N ) 
D M o l 

(VWN) 
D M o l 

( B L Y P ) 
S C F M P 2 

r ( H - S l ) 1.350 1.368 1.348 1.331 1.336 
r (Sl -S2) 2.146 2.112 2.145 2.108 2.114 
r(S2-S3) 2.137 2.107 2.137 2.106 2.111 

<(HSS) 89.8° 91.1° 90.4° 93.4° 92.2° 
<(SSS) 92.7° 92.4° 93.1° 95.7° 94.0° 

Table V . Rotational barrier heights for planar H2S2 and H2S4(kcal/mol) 

H 2 S 2 

H2S4 

S C F M P 2 F S D M o l D M o l 
(VWN) (VWN) ( B L Y P ) 

5.8 5.6 5.4 6.7 5.8 

23.1 25.3 25.9 30.3 27.9 
expérimental rotational barrier heights in kcal/mol: 1.9 (75), 2.7(7(5), 5.99(77), 

6.9(75). 

barrier height within this range. As can be seen from the calculated rotational barriers 
in Table V , the barrier height of 5.4 kcal/mol obtained by Fast_Structure is the lowest 
of all the theoretical methods used, but differs from the M P 2 and B L Y P results by 
only 0.3 and 0.5 kcal/mol, respectively. The FastJStructure result is, however, 1.3 
kcaJ/mol lower than the D M o l result calculated using the same L D A functional V W N . 
The values for H2S4 in Table V are for the completely planar anti, anti, and 
conformation. The value of 25.9 kcal/mol calculated by Fast_Structure for this 
physically unrealistic triple rotational transition state is within the range of 25.4 - 30.3 
kcal/mol obtained by the other correlated methods. 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
02

5

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



372 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Overall, the equilibrium and rotational transition state geometries as well as the 
barrier heights obtained by Fast_Structure indicate that the method gives a sufficiently 
accurate description of die potential energy surface to serve as a fast geometry 
optimization tool for the molecules investigated in this study. 

R e s u l t s 

Hypothes i s #1 The sulfur-sulfur bonds in the longer polysulfides are weaker and 
more reactive, and hence more corrosive. 

In this section we wi l l examine the lability of the sulfur-sulfur bond with 
respect to homolytic cleavage 

R S - S R ' - > RS» + R'S* 

and copper assisted reductive cleavage 

RS-SR ' + Cu(I)OX -> RSCu(II )OX + R'S» 

where X is a proton or cluster representing the surface. 
Bond lengths and the energies of the HS„H series are shown in Tables V I and 

V m . S C F , M P 2 and V W N all give results in very good agreement with experiment. 
B Y L P , as in many other systems (79), overestimates bond lengths. Fast_Structure, 
with a relatively loose gradient criterion for geometry optimizations, yields bond 
lengths between V W N and B L Y P , thus providing excellent starting points for 
additional refinement with the more rigorous methods. A n examination of Table V I 
shows that no matter which method is used, there is no significant difference in S-S 
bond lengths as one goes down the H S n H series to longer polysulfides. Bond indices 
calculated at the S C F level shown in Table V u , however, do indicate that there is a 
weakening in bond strength in the longer polysulfides. 

Examination of bond dissociation energy (DE), in which the stability of the 
thiyl free radical products plays a role, is consistent with the results of the bond index 
analysis. Bond dissociation energy is defined as the energy of the reaction A - B -> Α· 
+ Β· in the gas phase at OK. There is some experimental indication that S-S bonds are 
weaker in the longer polysulfides, but values for the bond dissociation energies show 
considerable variation. For H2S2 the reported experimental values for the S-S 
dissociation energy range from 59.6 to 80.4 kcal/mol (20-26), with most recent values 
converging on 64-65 kcal/mol with a reported uncertainty of ±6 kcal/mol (22). Part of 
the variability is due to the use of different experimental techniques performed in 
different laboratories, making comparison difficult. Franklin and Lumpkin (25), 
however, have reported the S-S D E for both the H2S2 and H2S3 using the same 
experimental technique, and found a decrease in D E from 80.4 kcal/mole for the 
disulfide to 64 kcal/mol for the trisulfide. Despite the experimental variability, all 
reported results for the d i - and trisulfides are higher than the 33 kcal/mol obtained for 
elemental sulfur, an S 8 'polysulfide' with a cyclic structure which undergoes 
homolytic cleavage to form the linear biradical «S-SÔ-S» (27), supporting the concept 
of weaker bonds in the longer chains. 

Calculated values for the polysulfide dissociation energies reported in Table I X 
and Reference 26 reflect the trend of decreasing bond strength with increasing chain 
length despite differences in the absolute values obtained for the correlated methods. 
B L Y P gives values closest to the range of experimental results, followed by M P 2 . 
The consistency of the trends observed with M P 2 and B L Y P for all the polysulfides 
suggest that the conclusions drawn on the results as calculated would be valid. L D A 
overestimates bond strength. Calculations at the S C F level severely underestimate 
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Table V I . Bond lengths of HS„H polysulfides (À) 
S C F M P 2 F S 

(VWN) 
D M o l 

( V W N ) 
D M o l 

( B L Y P ) 
Expt. 

H S S H 
H - S 1.338 1.337 1.347 1.371 1.387 1.35a 

S-S 2.077 2.066 2.097 2.062 2.128 2.055b 
H S S S H 
H - S 1.332 1.337 1.35 1.372 1.386 
S-S 2.064 2.065 2.083 2.064 2.133 
H S S S S H 
H - S 1.332 1.337 1.351 1.37 1.386 
H S - S 2.061 2.063 2.084 2.068 2.139 2.03 e 

H S S - S 2.064 2.065 2.091 2.059 2.122 2.07 e 

H S S S S S H 
H - S 1.332 1.337 1.353 1.371 1.387 
H S - S 2.065 2.064 2.085 2.063 2.133 
H S S - S 2.063 2.064 2.087 2.068 2.132 
H S S S S S S H 
H - S 1.332 1.338 1.350 1.371 1.387 
H S - S 2.061 2.062 2.082 2.064 2.132 
H S S - S 2.064 2.066 2.088 2.065 2.128 
H S S S - S 2.063 2.065 2.097 2.072 2.145 

a Ref . l l . b R e f . 12. e Ref . 14. 

Table V I I . Bond Indices of HS„H polysulfides 
S C F 

H S S H 
H - S 0.95 
S-S 1.00 
H S S S H 
H-S 0.95 
S-S 0.98 
H S S S S H 
H-S 0.95 
H S - S 0.99 
H S S - S 0.96 
H S S S S S H 
H-S 0.95 
H S - S 0.99 
H S S - S 0.96 
H S S S S S S H 
H-S 0.95 
H S - S 0.99 
H S S - S 0.96 
H S S S - S 0.96 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
02

5

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



374 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Table VIII. Total Energies of HS„H polysulfides (Hartrees) 
SCF MP2/DZP DMol 

(VWN) 
DMol (BLYP) 

HSSH -796.1749 -796.5819 -794.8866 -797.6153 
HSSSH -1193.6827 -1194.2883 -1191.7635 -1195.8397 
HSSSSH -1591.1906 -1591.9955 -1588.6400 -1594.0634 
HSSSSSH -1988.6983 -1989.7026 -1985.5158 -1992.2867 
HSSSSSSH -2386.2062 -2387.4103 -2382.3924 -2390.5105 

Thiyl Radicals 
HS« -398.0643 -398.2462 -397.3770 -398.7577 
HSS» -795.5845 -795.9677 -794.2674 -797.0052 
HSSS» -1193.0900 -1193.6718 -1191.1528 -1195.2322 
HSSSS» -1590.5990 -1591.3802 -1588.0340 -1593.4563 
HSSSSS» -1988.1060 -1989.0867 -1984.9116 -1991.6787 

Table IX. Bond dissociation energies of HS„H (kcal/mol) 
SCF MP2/DZP DMol 

(VWN) 
DMol 

(BLYP) 
Expt. 

HS-SH 29.1 56.1 83.2 62.7 59.6 - 80.4» 

HS-SSH 21.3 46.7 74.8 48.1 64 b 

HS-SSSH 22.8 48.6 69.2 48.1 
HS-SSSSH 22.0 47.8 65.8 45.6 
HS-SSSSSH 22.5 48.5 65.2 46.5 

HSS-SSH 13.6 37.7 66.0 33.2 
HSS-SSSH 15.0 39.6 60.0 30.9 
HSS-SSSSH 14.3 39.2 57.1 30.7 

HSSS-SSSH 16.5 41.8 54.5 28.9 

experimental bond dissociation energies in kcal/mol for H2S2: 59.6 (20), 
64.1 (21), 65±6 (22), 66 (23), 72 (24), 80.4 (25). 

*>Ref. 25. 

bond strength, as would be expected from correlation errors in a nonisodeismic 
reaction. 

This decrease bond dissociation energies with increasing chain length can be 
attributed to differences in stabilization of the unpaired electron in the fragments 
resulting from homolytic cleavage. The HS* fragment is the most unstable of all and is 
responsible for the large energy required to disrupt the S-S bond in H2S2. The results 
using the BLYP functional indicate that the second sulfur atom in HSS* provides an 
additional stabilization energy of 15 kcal/mol over the HS* radical. These results are 
consistent with the reported stability of the disulfur thiyl radical from the experimental 
work on dimethyl polysulfides of Pickering et al.(27). Examination of the atomic spin 
populations indicates clearly that derealization of die unpaired electron is responsible 
for the lower energy. In HS* the spin population is entirely on the sulfur atom, 
whereas in H-S1-S2* it is 0.31 on SI and 0.69 on the terminal S2 atom. The 
stabilization of the radical by a three-electron bond between the two sulfur atoms at the 
end of the chain was postulated in the fifties (28) and is supported by these nonlocal 
DFT results. For MP2, the average stabilization energy going from HS* to HSS* is 
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less than B L Y P at 9 kcal/mol. Spin population analyses were not performed at the 
M P 2 level, but results obtained at the S C F level indicate less delocalization occurs than 
in nonlocal D F T with spin populations of 0.11 and 0.89 on SI and S2, respectively, 
increasing the bond order between them from 0.95 in the intact polysulfide to 1.23 in 
the radical. 

Increasing the length of the thiyl radical from two to three sulfurs atoms has a 
much less dramatic stabilization effect. The delocalization of the unpaired electron is 
primarily limited to the two terminal sulfur atoms, and the addition of the third sulfur 
atom has a negligible effect. The spin population becomes 0.38 on S2 and 0.56 on S3 
in the H-S1-S2-S3» fragment using the B L Y P functional, and the stabilization energy 
increases an average of 2 kcal/mol over the HSS» fragment. For L D A the stabilization 
energy is 6 kcal/mol. A t the H F level the spin populations of 0.11 and 0.87 on S2 and 
S3, respectively, represent a negligible change from SI and S2 in H S S e above. The 
M P 2 energy on the D Z P optimized geometry even shows a slight increase in D E of 1.9 
kcal/mol and hence a slight destabilization of HSSS» compared to HSS*. 

The magnitude of the stabilization effect of adding additional sulfurs to the thiyl 
radical fragment diminishes even further on going from three to four sulfur atoms, 
being less than 1 kcal/mol for B L Y P and M P 2 , and approximately 3 kcal/mol for 
V W N . Change in spin populations is negligible, as the addition of the fourth sulfur 
does not contribute to delocalization. 

Some of the variability and errors in treating correlation when calculating bond 
dissociation energies can be minimized if the energies are calculated relative to H 2 and 
the isodeismic character of the reaction can be maintained: 

R S - S R + H 2 - > R S - H + R S - H 

The isodeismic results for the HS„H series are reported in Table X . The reaction 
energies closest to experiment were again achieved with the B L Y P functional. The 
differences in the isodeismic reaction energies can be related to the S-S bond 
dissociation energies to obtain relative values. A l l correlated methods used are in close 
agreement indicating a decrease in the S-S bond dissociation energy of 13.0, 13.7, 
12.0 kcal/mol (compared to 11.6 kcal/mol experimentally (27)) between the SI and S2 
atoms in the longer polysulfides relative to the bond in H 2 S 2 , as well as a general 
weakening between S2 and S3 relative to SI and S2 in all molecules. The M P 2 results 
show a smooth decrease in the S1-S2 and S2-S3 dissociation energies as the 
polysulfide chain lengthens, whereas both local and nonlocal D F T show some 
irregularities of less than a kcal/mol. For the central S3-S4 bond in H 2 S 6 , both local 
and nonlocal D F T indicated a slight strengthening of 1 kcal/mol of the sulfide bond 
relative to the S2-S3 bond of H 2 S 4 , whereas M P 2 showed a weakening of 1.2 
kcal/mol. 

The results for the dimethylpolysulfide series reported in Tables X I and X I I 
below show a similar trend of decreasing D E as the polysulfide chains increase in 
length, with a difference between the disulfide and the central S3-S4 bond in the 
hexasulfide being 19.9, 24.9, 39.0, and 23.7 kcal/mol for M P 2 , D M o l V W N , and 
D M o l B L Y P , respectively. Several points are worth noting in comparing this series to 
the HS„H series, the first being the effect of the methyl groups on D E . For dimethyl 
disulfide the S-S D E decreases 2.3 kcal/mol compared to H 2 S 2 using the B L Y P 
functional, but increases 3.5 kcal/mol using M P 2 . The actual values of D E for B L Y P 
and M P 2 , however, converge on the same value of 60 kcal/mol, which is 7-13 
kcal/mol higher than the range of experimental values. For C H 3 S S - S S C H 3 the D E 
calculated by B L Y P (37.8 kcal/mol) and M P 2 (34.8 kcal/mol) are in much better 
agreement with the experimental value of 36.6 kcal/mol obtained by the relatively 
accurate free-radical scavenger technique (57). 
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Table X. Reaction Energies RS-SR* + H 2 -> RS-H + R'S-H (kcal/mol) 
S C F M P 2 / 

D Z P 
M P 2 D M o l 

( V W N ) 
D M o l 

( B L Y P ) 
E x p t a 

H S - S H -21.7 -17.4 -17.4 -26.1 -11.9 -13.7 

H S - S S H -19.6 -12.1 -12.1 -19.1 -5.7 -5.1 
H S - S S S H -19.6 -11.7 -11.7 -19.3 -6.1 -6.9 
H S - S S S S H -19.7 -11.7 -11.7 -19.8 -6.4 
H S - S S S S S H -19.6 -11.4 -11.4 -19.3 -6.1 

H S S - S S H -17.4 -6.4 -6.4 -12.3 0.1 -2.1 
H S S - S S S H -17.6 -6.0 -6.0 -13.0 -0.6 
H S S - S S S S H -17.5 -5.7 -5.6 -13.0 -0.6 

H S S S - S S S H -17.6 -5.2 -5.2 -13.2 -1.0 
a Ref . 21. 

Table XL Bond lengths for C H 3 S „ C H 3 (À) 
S C F M P 2 F S D M o l D M o l Expt . 3 

(VWN) ( V W N ) ( B L Y P ) 
Expt . 3 

C H 3 S S C H 3 
C-S 1.816 1.814 1.820 1.806 1.867 1.810 
S-S 2.065 2.056 2.054 2.039 2.103 2.03 
C H 3 S S S C H 3 
C-S 1.813 1.811 1.811 1.802 1.876 
S-S 2.070 2.065 2.069 2.103 2.122 
C H 3 S S S S C H 3 
C-S 1.814 1.812 1.813 1.802 1.863 
C S - S 2.068 2.056 2.059 2.052 2.107 
C S S - S 2.080 2.074 2.118 2.083 2.165 
C H 3 S S S S S C H 3 
C-S 1.809 1.815 1.803 1.864 
C S - S 2.011 2.059 2.045 2.109 
C S S - S 2.052 2.106 2.085 2.153 
C H 3 S S S S S S C H 3 
C-S 1.817 1.823 1.817 1.863 
C S - S 2.065 2.063 2.065 2.103 
C S S - S 2.075 2.095 2.075 2.156 
C S S S - S S S C 2.074 2.080 2.074 2.131 

a Ref . 32. 

How do the energetics of sulfide bond cleavage change in the presence of the 
copper surface? X P S and low angle Xray diffraction indicate that C U 2 O is the 
predominant species on the surface of the copper strip used in the corrosion test (33). 
A s the surface being corroded is actually Ο12Ο, the formal +1 oxidation state of 
copper is used in this study. The simplest Cu(I) species which can be used to 
approximate the copper oxide surface is Cu(I)OH in the following reaction: 

R S - S R ' + C u O H -> R S - C u O H + RS» 
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Table XI I . Bond Dissociation Energies for C H 3 S W C H 3 (kcal/mol) 
S C F M P 2 / 

D Z P 
D M o l 

( V W N ) 
D M o l 

( B L Y P ) 
Expt. 

C H 3 S - S C H 3 29.4 59.6 89.7 60.4 67-73.2 a 

C H 3 S - S S C H 3 21.6 48.0 68.9 49.7 4 6 b 

C H 3 S - S S S C H 3 22.5 50.3 71.1 49.2 
C H 3 S - S S S S C H 3 22.8 50.6 64.8 47.4 
C H 3 S - S S S S S C H 3 22.4 50.5 69.1 45.3 

C H 3 S S - S S C H 3 11.8 34.8 46.1 37.8 36.6 e 

C H 3 S S - S S S C H 3 13.5 37.4 48.4 37.2 

C H 3 S S S - S S S C H 3 14.4 39.7 50.7 36.7 
experimental S-S bond dissociation energies for C H 3 S - S C H 3 in kcal/mol: 67 (29), 

69 (24), 70.7 (21) 73.2 (29). 
b Ref . 30. 
c Ref . 31. 

For this and subsequent reactions energies in this work involving metal containing 
clusters, we report nonlocal DFT-based results due to greater computational efficiency, 
although both M P 2 and B L Y P have exhibited trends consistent with each other and 
with the majority of experimental data. As can be seen from the results in Table ΧΠΙ, 
considerable energy from the bond dissociation is recovered from the interaction of the 
radical fragments with C u O H . For D M o l V W N , this amount ranges between 55 and 
77 kcal/mol depending upon which fragment interacts with the surface, making the 
reaction very exothermic even i f only one of the two fragments is stabilized by the 
surface. For both fragments, the amount of energy recovered would be twice that 
amount. For D M o l B L Y P , the amount of energy recovered ranges between 37 and 52 
kcal/mol. If the uncaptured fragment is the methylsulfide radical C H 3 S e the bond 
dissociation reaction is still endothermic by 5.4 to 10.4 kcal/mol, but becomes 
exothermic when the uncaptured fragment is the disulfide radical CH3SS* . If both 
fragments are 'recovered' by the 'surface', then the bond dissociation becomes 
spontaneous in all cases in D F T . 

To design a finite cluster to include more than one copper atom, several 
considerations are involved. Ideally one would like a cluster which models the 
reactivity, electron density, and the symmetry of the periodic surface, yet is 
sufficiently small to be computationally feasible. In addition, one would like to 
eliminate dangling bonds, except at the surface, yet maintain electronic neutrality, as 
electrostatic forces are very long range and can easily distort the charge density of the 
cluster. 

In the crystal structure of C u 2 0 shown in Figure 2, one can see that each 
oxygen atom is tetrahedrally coordinated in a diamond-like structure, with linearly 
coordinated copper atoms serving as spacers between each pair of oxygen atoms. 
Hence, a logical cluster would be one shown in Figure 3a, with hydrogen atoms being 
used to replace the terminal shell of copper atoms. Assuming each copper atom forms 
one covalent and one Lewis acid bond, and each oxygen forms two covalent and two 
Lewis base bonds, the cluster wi l l have a net +5 charge. A neutral cluster can be 
constructed by using only four terminating hydrogen atoms instead of nine as shown 
in Figure 3b. The positions of the terminating hydrogens are optimized, as are the 
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378 C H E M I C A L A P P L I C A T I O N S O F D E N S I T Y - F U N C T I O N A L T H E O R Y 

Figure 2. Crystal structure of C u 2 0 showing tetrahedrally coordinated oxygen 
atoms and linear coordinated copper. 

Figure 3. Copper oxide clusters: (a). [ C u 4 0 4 H 9 ] + 5 (b). C u 4 0 4 H 4 
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Table XIII . Reaction Energy for RS-SR* + C u O H -> R S - C u O H + R S * 
(kcal/mol) 

Reaction Product D M o l D M o l 
(VWN) ( B L Y P ) 

C H 3 S * C u O H + * S C H 3 12.3 7.8 
C H 3 S S * C u O H + * S C H 3 8.8 5.4 
C H 3 S S S * C u O H + * S C H 3 4.6 6.8 
C H 3 S S S S * C u O H + * S C H 3 10.1 10.4 
C H 3 S S S S S * C u O H + * S C H 3 2.6 7.0 

C H 3 S * C u O H + * S S C H 3 -8.6 -2.8 
C H 3 S S * C u O H + * S S C H 3 -13.9 -6.5 
C H 3 S S S * C u O H + * S S C H 3 -18.1 -5.2 
C H 3 S S S S * C u O H + * S S C H 3 -12.7 -1.5 

C H 3 S S S * C u O H + * S S S C H 3 -15.8 -5.8 

central copper and its adjacent oxygen atom, while the remainder of the atoms in the 
cluster are fixed. 

Mull iken population analyses performed with DSolid (34) on C u 2 0 with three-
dimensional periodic boundary conditions shows a charge of +0.41 on copper and 
-0.81 on oxygen in the crystal. This charge on copper is reproduced almost exactiy in 
C u O H (0.41) and very closely in the neutral C u 4 0 4 H 4 cluster (0.38). The effect of 
the +5 charge on the cluster in Figure 3a is apparent when compared to the 
electronically neutral C u O H and C u 4 0 4 H 4 clusters when each forms a complex with 
•SH. From the geometries in Table X I V and the Mull iken populations in Table X V , it 
can be clearly seen that the +5 charge results in a slight lengthening of the Cu-S bond 
(0.05Â), a shortening of the C u - 0 bond (0.05Â), and considerable shifting of electron 
density away from the reactive site. In the +5 charged cluster, the sulfur atom has a 
charge of +0.31, whereas in the neutral clusters C u O H and C u 4 0 4 H 4 , it has charges 
of -0.33 and -0.44, respectively, indicating an additional transfer of approximately 2/3 
of an electron from the sulfur atom to the copper oxide cluster. The additional charge 
resides almost exclusively on the terminal hydrogen and peripheral oxygen atoms. 
The charge on the central copper atom in all three S H complexes is relatively 
unaffected by the total charge, with populations ranging from 0.26 to 0.31. 

For the neutral clusters, a smaU amount of charge is actually transferred from 
the cluster to the sulfur atom, 0.08e for the C u O H cluster and O.lSe for the C u 4 0 4 H 4 

cluster. There is some reference in the literature (35) to reductive cleavage of 
polysulfides by metal surfaces in which an electron is transferred from the metal to the 
sulfur to produce the sulfide anion: 

R-S-S -R ' -> R-S* + R 'S : -
metal 

For a passivated metal surface such as copper oxide where the copper is in a formal +1 
oxidation state, such reductive cleavage is clearly not the case. Examination of the 
electronic structure shows that the very stable d 1 0 electronic configuration of the 
copper atom remains intact. 

Surprisingly, whether or not the cluster is neutral has a negligible effect on the 
binding energy despite the rather considerable effect on the charge distribution. The 
binding energy of HS* to the charged cluster is -83.7 kcal/mol, only 0.5 kcal/mol 
lower than the-83.2 kcal/mol obtained for the neutral C u 4 0 4 H U cluster. The-108.9 
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Table XIV. Geometry of HSCuOX complexes 

H S - C u O H H S * C u 4 0 4 H 4 [ H S * C u 4 0 4 H 9 ] + 5 

r ( H S ) A 1.371 1.384 1.388 
r(SCu) Â 2.072 2.161 2.109 
r(CuO)À 1.753 1.930 1.980 

<(HSCu) 95.7° 94.9° 97.9° 
<(SCuO) 174.2° 177.9° 176.9° 

Table XV. Mull iken populations in Copper Oxide Clusters (VWN) 

Free Complexed 
Neutral CuOH 

S -0.25 -0.33 
H 0.25 0.29 

C u 0.41 0.31 
0 -0.84 -0.80 
H 0.44 0.53 

Neutral C U 4 O 4 H 4 
S -0.25 0.14 
H 0.25 0.44 

C u 0.38 0.26 
0 -0.86 -0.87 

2 C u 0.34 0.40 
l C u 0.33 0.34 
2 0 -0.85 -0.80 
1 0 -0.99 -0.99 
2 H 0.63 0.63 
2 H 0.43 0.49 

[ C u 4 0 4 H 9 ] + 5 

C u 0.82 0.31 
0 -0.95 -0.91 

3 C u 0.52 0.50 
3 0 -1.26 -1.26 
9 H 0.81 0.82 

S -0.25 -0.44 
H 0.25 0.27 

kcal/mol binding energy for the C u O H cluster was 25 kcal/mol lower than for the 
larger clusters, probably because free C u O H is intrinsically higher in energy than a 
larger cluster. 

Calculations of the binding energy of the CH3S„» series with the larger clusters 
using the B L Y P functional are currentiy in progress. 

Hypothesis #2: The longer polysulfides are more corrosive because they can 
chelate the copper atoms and remove them from the metal surface. 
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The optimized geometries obtained with the B L Y P functional of the H2S4, 
H2S5, and H2S6 chelation complexes with Cu(I) are shown in Figure 4. To determine 
the strain energy in the three complexes, the energy of the HS„H chain is calculated in 
the conformation shown in Figure 4, minus the copper atom, and compared to the 
energy of the equilibrium geometry. A s can be seen from the results in Table X V I , the 
potential energy surface for the distortion of the polysulfide chains is relative flat, and 
the strain energy for the polysulfide chain is fairly low at less than 15 kcal/mol. 

Table X V I . Strain Energies of [Cu»H 2 S n ]
+ 1 chelation complexes 

(kcal/mol) 

[ C u » H 2 S 4 ] + 1 [ C u * H 2 S 5 ] + 1 [Cu*H 2 S 6 ]+i 
D E (reaction)3 -72.5 -79.5 -83.4 
D E HS„H strain 10.8 8.3 14.6 
D E Cu(I) bend 102.7 93.9 90.9 
<SCuS b 121.7° 149.2° 158.9° 

a Energy of the reaction Cu(I) + H 2 S n -> [ C u * H 2 S n ] + 1 

b Opt imum <SCuS is 174.2°, shown in Figure 5. 

Quite a different picture emerges, however, when the strain energy for bending 
the S-Cu-S bond is considered. A [H2S»Cu»SH2]+1 complex is used as a benchmark 
compound to determine the minimum energy of the S-Cu-S bond. Three possible 
molecular symmetries of [H2S e Cu e SH2] + 1 , C2, D ^ , and D2/1, shown in Figure 5, 
were examined to determine the optimum S-Cu-S angle. The lowest energy structure 
exhibits C2 symmetry and has a S-Cu-S bond angle of 174.2°. The D ^ , and D2/1 
structures were 27.2 and 28.8 kcal/mol, respectively, higher in energy than the C 2 

geometry. The strain energy of the bent S-Cu-S bond in the chelation complexes was 
determined by fixing the copper and sulfur atoms at the positions they occupy in the 
complexes, optimizing the positions of the two hydrogens added to each sulfur, and 
comparing the energy to the C2 structure. As can be seen from this comparison in 
Table X V I , the strain energies are exceedingly large: 102.7, 93.9, and 90.9 kcal/mol, 
for the H2S4, H2S5, and H2S6 Cu(I) complexes respectively. Therefore, it can be 
concluded that polysulfide chains containing 4 to 6 sulfurs are not long enough to 
accommodate the linear geometry required by a Cu(I) ion, making it extremely unlikely 
that such a chelation mechanism is primarily responsible for the corrosion of a Q12O 
surface. Once in solution, it is possible that two chains or four fragments of sulfide 
chains may form a tetrahedral complex with the Cu(I) ion, but steric considerations 
make this unlikely to occur at the surface. 

Hypothesis #3 The steric bulk of the side chains can inhibit corrosion by limiting 
the contact of the sulfur with the surface in the shorter polysulfide chains. 

To study the effect of bulky hydrocarbon side chains, i-butyl groups are 
chosen as model compounds. Geometries are obtained using Fast_Structure. The 
Connolly surfaces of the di-i-butyl sulfides were calculated using Insightn (36) with a 
5.0 A probe radius to approximate an ideal, relatively flat solid surface. A s can be 
seen from the results in Figures 6 and 7, the d i - and disulfides are well-protected with 
only 19.7 and 33.8 Â 2 , respectively, of exposed surface area, whereas the tetra-, 
penta- and hexasulfides have 48.5, 66.9 and 74.8 Â 2 , respectively, and hence are 
relatively exposed. 
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Figure 4. Cu(I) chelation complexes: (a). [ C u » H 2 S 4 ] + 1 (b). [ C u * H 2 S 5 ] + 1 (c). 
[Cu -H 2 S 6 ]+ i 
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Lowest Frequencies of the Bending Vibrational Modes (cm"1) 

H 2 S 2 H 2 S 3 H 2 S 4 ^ 2 ^ 5 ^ 2 ^ 6 

329 180 76 35 19 

Frequency 
(cm-*) 

300 _ 

200 _ 

100 

~ι—ι—ι—ι—ι—ι ^ 
2 4 6 

Number of sulfur atoms 
Figure 7. Results of force constant calculations on HS„H showing the 
exponential decrease of the lowest frequency bending mode as the number of 
sulfur atoms increases. 

Accessibility of the sulfur atoms to the surface is not determined solely by the 
surface area exposed in the static lowest energy conformation, but also by the sulfide 
chain's flexibility. Force constant calculations on HS„H compounds were performed 
using Fast_Structure. The results shown in Figure 7 indicate that the lowest frequency 
of the bending vibrational modes decreases exponentially as the number of sulfur 
atoms increases. This behavior implies that the sulfide chains are much easier to bend 
for η > 4, thus increasing the possibility of exposing unhindered sulfur to the surface 
and increasing corrosive behavior. 

Conclusions 

After investigation of the three hypotheses to explain greater corrosiveness of 
the longer polysulfides - weaker, more reactive bonds in die longer polysulfides, 
chelation, and steric protection by hydrocarbon side chains - we conclude that the most 
important factor is the greater reactivity of the longer chains. This greater reactivity is 
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due to the greater stabilization of the radical product of the homolytic cleavage in the 
longer chains, resulting in a lower bond dissociation energy. The difference in bond 
dissociation energy using B L Y P is 34 kcal/mol higher for the central sulfide bond in 
the hexasulfide than the disulfide, and 19.2 kcal/mol than the trisulfide for the H S n H 
series, and 24 and 13 kcal/mol, respectively, for the analogous D E for the 
dimethylpolysulfide series. 

A l l the sulfide bonds, however, are labile in the presence of copper oxide, as 
the bond dissociation energy is more than compensated for by the exothermic 
adsorption of both sulfide radicals onto exposed copper sites on the surface. Hence 
we conclude that the steric protection provided by bulky hydrocarbon sidechains such 
as f-butyl groups can be useful in the protection of the copper surface from the d i - and 
trisulfides. 

Chelation by the longer polysulfide chains was shown not to be a viable 
mechanism of corrosion, at least for copper species in the +1 formal oxidation state 
found in C U 2 O . The distortion of the S-Cu-S bond required to chelate a linearly 
coordinated Cu(I) atom requires too high an energy penalty to be feasible. It is much 
more likely that the polysulfide chain would be cleaved into fragments upon contact 
with the surface rather than chelating a copper atom, and that it is these fragments 
which are removing the copper atoms, irrespective of whether they initially came from 
the same polysulfide molecule or not. Longer polysulfide chains may increase the 
probability of two fragmented sulfide chains being in close proximity to a single site 
on the surface, but this is probably not as important a factor as their greater reactivity. 

O f the theoretical methods used in this study, D M o l with the B L Y P functional 
and M P 2 were found to give bond dissociation energies in closest agreement with the 
available experimental data, although greater accuracy would be desirable. We are 
currently investigating in greater detail the errors due to correlation and spin 
contamination. Bond lengths calculated with B L Y P were systematically too long. 
Fast_Structure, based on the Harris functional with trial densities constructed from 
spherically symmetric site-densities, was found to give ground state and rotational 
transition state structures which agreed well with fully self-consistent methods and 
with experiment, thus demonstrating its value as a fast method to obtain reasonable 
starting geometries without parameterization. 
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Chapter 26 

A Fast Density-Functional Method 
for Chemistry 

Xiao-Ping Li1, Jan Andzelm1, John Harris1, and Anne M. Chaka2 

1Biosym/Molecular Simulation, 9685 Scranton Road, 
San Diego, CA 92121-3752 

2Lubrizol Corporation, 29400 Lakeland Boulevard, 
Wickliffe, OH 44092-2298 

Standard methods for performing Kohn-Sham calculations involve 
self-consistency cycling and require either the solution of Poisson's 
equation for a density given as a quadratic sum over the orbital basis, or 
the use of a separate density basis and a fitting procedure. A n alternate 
approach using a functional different from but closely related to that of 
Kohn and Sham avoids both self-consistency cycling and density fitting 
and allows accurate results wi th comparatively less effort. The main 
elements of this approach and some applications that illustrate its 
potential in chemistry are discussed. 

Over the past few years, the usefulness of the Kohn-Sham density 
funct ional / loca l density approximation ( D F T - L D A ) approach [1] in 
chemistry has been wide ly recognized. Recently, the method was 
val idated i n systematic calculations for a set of transition-metal 
compounds invo lv ing first- and second-row transition metals [2,3]. 
Determining structural information for transition-metal compounds has 
presented a significant challenge for theoretical methods. Hartree-Fock 
theory [4], so successful when applied to organic systems, fails to predict 
accurately the structures of organometallics and more accurate methods 
that inc lude electron correlation exp l i c i t ly are computat ional ly 
demanding. Recently, a successful parametrization of a semi-empirical 
method has been accomplished for several transition metals [5]. The semi– 
empirical approach is very fast, but it is limited to systems for which 
parameters are available. There are many possible hybridization schemes 
and oxidation states of transition metals bonded to various ligands and 
this makes determination of semi-empirical or force-field parameters 
difficult and not easily transferable. It was found [2,3] that the local density 
approximation provides accurate structures involv ing covalent metal– 
ligand bonds. In the case of dative bonds such as occur in metal carbonyls, 

0097-6156/96/0629-0388$15.00/0 
© 1996 American Chemical Society 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 8

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 5
, 1

99
6 

| d
oi

: 1
0.

10
21

/b
k-

19
96

-0
62

9.
ch

02
6

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



26. LI ET AL. A Fast Density-Functional Method for Chemistry 389 

the L D A gives somewhat shortened metal-ligand bond lengths. This is 
due to the tendency of the L D A to overestimate attractive nonbonded 
interactions and is corrected when gradient corrections are included. 

The availability of a first principles method that predicts accurate 
structures at a lesser computational cost than correlated ab initio methods 
is therefore rather important. Nevertheless, the standard implementation 
of the D F T method, via self-consistent solution of the Kohn Sham 
equations, remains a major computational problem and alternative 
methods of implementation that can reduce this cost are highly desirable. 
The main purpose of this paper is to outline the elements of such a 
method and to validate it via explicit calculation, particularly for 
organometallic molecules. 

The crucial advantage of the Kohn-Sham D F T approach over 
conventional quantum chemical methods is the replacement of the many-
electron wavefunction by the density as the quantity that is varied, and the 
resulting reduction to a "one-particle" problem. In carrying out Kohn-
Sham calculations some computational difficulties arise that are due 
ultimately to the definition of the Kohn-Sham density functional, Eks/ in 
terms of V-representable densities. Each trial density must be generated by 
a Schrôdinger equation and cannot be chosen freely. In practice, this 
means that Eks cannot be minimized directly by optimizing within a 
restricted density basis. Furthermore, if atomic orbitals are used to solve 
the one-particle problem, the evaluation of Eks requires, in principle, four-
center integrals. To circumvent this, density fit (or density-projection) 
procedures are commonly used in conjunction with self-consistency 
cycling (see, eg., Ref. [6]). 

A n alternate procedure is to exploit the properties of a different 
density functional, E , that has come to be known as the Harris Functional 
[7-9]. This possesses the same stationary points as the Kohn-Sham 
functional but is defined on function space. The crucial advantage of Ε as 
distinct from Eks is that it can be evaluated using a density basis chosen for 
calculational convenience, for example, a sum over spherically symmetric 
site densities. The disadvantage is that, unlike Eks/ E does not obey a 
minimum principle. Finnis first pointed out that Ε displays a maximum 
for "reasonable" density variations [10]. Robinson and Farid showed that, 
within the local density approximation (LDA), Ε displays a saddle point, 
but with positive curvature occurring only for density fluctuations 
composed solely of spatially rapidly varying components [11]. Since it is 
quite straightforward to eliminate this possibility, a maximum property of 
Ε can be guaranteed. Maximizing Ε is then the equivalent in the new 
approach to minimizing Eks (commonly achieved via "self-consistency 
cycling"). 

Other authors have exploited the favourable properties of E , notably 
Sankey and Niklewski [12], who restricted the trial density to a sum of 
overlapped neutral atom densities and made a series of approximations 
that resulted in an extremely fast tight-binding-like scheme. A series of 
applications, notably to large carbon systems, has shown that this approach 
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can work rather well [13]. The scheme we describe here is more 
conservative and focuses in the first instance on universality (i.e. full 
coverage of the periodic table) rather than on efficiency for a limited class 
of elements. The scheme is a further development of a method suggested 
previously [14] and described in detail by Lin and Harris [15]. The most 
important innovation is provision for charge transfer which is crucial in 
general applications. Recently, the Sankey-Niklewski scheme has also 
been modified to allow for charge transfer [16]. 

The organization of this paper is as follows: In Section 2, we give 
a brief description of the scheme and detail those calculational features 
that differ from the proposal of Lin and Harris [15]. These refer in the 
main to the orbital and density bases used, the manner of performing 
integrals and the provision for charge transfer. In Section 3, we then quote 
results on the structure of a series of molecules, which illustrate that the 
present scheme gives an excellent description of structural properties over 
a wide class of bonding environments. 

Theoretical Discussion 

The theoretical elements underlying the basic scheme are described 
in detail in Ref. [15] and we restrict ourselves here to a brief summary. 
The energy functional, for Ν electrons in external (usually nuclear) field 
Vext(x) is: 

where ε η are the eigenvalues of the one-particle Schrodinger equation 

Ε[η]=Σα η ε η - ί^) {^ φ ( χ ) -εχο ( χ )+μ χ € ^)} Eq.l 

Eq.2 

with potential construction 

ν6ί£(^)=ν6χί(5ί)+φ^)+μχο^) Eq.3 

Here, Φ is the Coulomb potential corresponding to n(x) and 

Eq.4 

We assume the local density approximation (LDA) for the exchange-
correlation energy density 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
O

ct
ob

er
 8

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 5
, 1

99
6 

| d
oi

: 1
0.

10
21

/b
k-

19
96

-0
62

9.
ch

02
6

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 
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ε Χ ο ( * )=ε«Η*) ) Eq-s 

with £xC(n) the energy of a homogeneous electron gas having density n. 
A notable feature of the energy functional, Eq. 1, is that its evaluation does 
not involve explicitly the "out" density from the Schrôdinger equation, 

«(*) = Σ„Λ„|ψ„(ί)|2 Eq.6 

where the a n are appropriate occupation numbers. The "in-density" 
appearing in E[n] in Eq. 1 is independent of the orbitals that are generated 
via the solution of Eq. 2 and it is this freedom that gives Eq. 1 its flexibility 
with regard to approximation. 

The evaluation of Eq. 1 and its derivatives is achieved by first 
choosing a convenient density basis. This defines the potential appearing 
in Eq. 2, which is then solved using an orbital basis. As an appropriate 
trial density we use the form 

η ( χ ) = ΣΣυΖιν(|χ-χ|) Eq.7 

where ι^^(|χ —X||) is an atom centered, spherically-symmetric site density 

and r2X is a parameter that may be fixed or can vary. In Eq. 7, the sum 
over " i " refers to a sum over sites, and the sum over "nu" allows for two 
or more density basis functions per site. Since only spherically symmetric 
site densities are used, the solution of Poisson's equation for any density of 
the form in Eq. 7 is trivial. If the a r e fixed, the energy and forces are 
determined by a single evaluation of Eq. 1 and its derivatives with respect 
to the nuclear positions (formulae for which are given in Ref. [15]). The 
time limiting step in the calculation is the solution of the one-particle 
Schrôdinger equation as in Eq. 2, but only one solution is needed for a 
given set of nuclear locations so the speed up as compared with a 
traditional DFT code (other things being equal) is roughly the number of 
iterations the latter requires to become "self-consistent." This can be as 
small as 3 and as large as 50 depending on the application. 

The individual density basis functions in Eq. 7 are numerical and 
are generated using an atom program. For light atoms, two functions per 
site, one representing the core and one the valence, are often sufficient. 
This is because s- and p-orbitals in the first row have similar extents. 
Supplementary functions calculated using ionic configurations to 
improve accuracy can be added. For heavier atoms, in particular for 
transition elements it is important to allow for weighting of individual 
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392 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

shells. This is because transfer between shells that accompanies chemical 
bonding can cause quite drastic changes in the density. Thus, in the third 
row separate functions are used to represent the s- and d- shells. 

In general, it w i l l be necessary to allow for some variation in the 
multiplicative parameters, Z?, that influence the charge distribution. The 
variation may need to describe a charge transfer between sites or an 
effective change of intra-site electron configuration (eg., s => d transfer). 
This can be done conveniently using the maximum principle obeyed by Ε 
with respect to density fluctuations. The "forces" acting on the charge 
variables 2̂  are given by Eq. 9 of Ref. 15 and all that is necessary is to 
maximize Ε subject to the constraint on the overall norm 

Σ Σ Ζ ^ Ν Eq.8 
i υ 

The max imum principle can be guaranteed since al l density 
fluctuations corresponding to a given have the same spatial form. It is 
therefore easy to ensure that the electrostatic contribution to the curvature 
outweighs the exchange-correlation component, which is the condition 
for a maximum. (Another way of saying this is that al l density 
fluctuations corresponding to a given site density have the same 
decomposition in Fourier space. It is necessary only to ensure that each 
function of the density basis has sufficient weight in low-k components.) 
In practice, this w i l l be true for any atom-derived density of the type 
considered. A potential problem would arise here only if fine tuning of 
the density were to be attempted by, eg., including density basis functions 
with strong angular variations. Since the Harris functional is quite flat 
near to its saddle point, it is likely that acceptable accuracy can invariably 
be achieved without such fine timing. 

The one-particle Schrôdinger equation, E q . 2, is so lved 
approximately by expanding the one-electron wavefunctons, Ψ„, in a basis 
of atomic orbitals (AO's), χ., in the usual way, 

i 

and solving the resulting secular problem 

[H,-£A]c; = 0 Eq.10 

Here Hij and Sij are Hamiltonian and overlap matrices, respectively. 
In a departure from the method in Ref. [15], the orbital basis is 

numerical rather than analytic, comprising A O s generated using an atom 
program with finite range boundary conditions, so that the orbitals vanish 
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continuously at a cutoff radius, r?. These radii can be chosen to combine 

accuracy w i th efficiency and numerical stability. The r? determine the 
range beyond which overlap of AO's centered on different sites vanishes 
and, therefore, control the number of integrals that contribute to the 
Hami l tonian and overlap matrices. As Sankey and N ik lewsk i , in 
particular, have noted [12], finite range orbitals have a critical advantage 
over conventional AOs when calculations are carried out for extended 
systems. A l l AOs are generated using an atom program w i th neutral 
atomic, and ionic configurations. The latter include "polarization 
functions" or "atom-unoccupied orbitals" that are important whenever 
the corresponding levels are low-lying. (Occasionally, truncated Slater 
orbitals are preferred for polarization functions.) 

The overall t ime-limiting feature of the scheme is the evaluation of 
the three-center integrals that contribute to the matrix elements in Eq. 10. 
Each of these is performed using the efficient weight-function method of 
Delley [6]. Energy derivatives are calculated as detailed in Ref, [15] (cf. Eq. 
10. This is equivalent to the corresponding expression, also Eq. 10, in Ref. 
[17]), wi th additional contributions that arise because of the dependence of 
the numerical grids on the nuclear positions. The energy gradients and 
energy are then consistent to high accuracy even when the numerical 
meshes are sparse. In contrast to Sankey and Niklewski , we have not 
invoked approximating procedures for the three-center integrals. This is 
because, init ial ly, our goal is to retain universality at the same level as 
conventional DFT-LDA schemes (some of the Sankey /N ik lewsk i 
approximations breakdown for transition elements, for example). We 
believe, nevertheless, that there are many possibilities for approximation 
that can reduce the CPU requirement of the code very significantly. 

Geometry optimization can be carried out either directly, using a 
BFGS scheme [18], wi th or without optimization of the charge parameters, 
or by dynamical methods. In the former case, it should be possible in 
principle to optimize the nuclear positions and the charge density 
variables simultaneously. However, we have not yet found a procedure 
for this that was sufficiently stable. Currently, the charge variables are 
optimized separately for each set of nuclear positions. This is a stable, but 
not efficient procedure. 

Dynamical methods (simulated annealing) employ M D algorithms 
and can, in principle, propagate the charge variables along w i th the 
nuclear positions. As detailed elsewhere [10], the density parameters can 
be assigned a (negative) mass such that they are continuously and 
adiabatically driven to the maximum of E[n]. This method, which is a 
real-space version of the propagation method of Car and Parrinello for 
plane-wave coefficients [19], achieves continuous updating of the trial 
density so this is opt imized at all times at very l i t t le addit ional 
computational cost. Tliis is certainly the method of choice for simulated 
annealing and molecular dynamics if i t is relatively straightforward to 
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394 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

f ind appropriate masses for the density variables. This is a matter of 
building up experience. 

Results 

A n important aspect of the calculational scheme described above is 
the limited nature of the density basis. Since the actual density of a system 
displaying covalent bonding cannot be represented i n the form given in 
Eq. 7, it might seem that the use of this ansatz may involve unacceptable 
error whatever basis functions are used. In this section, we w i l l quote 
results for a series of molecules which demonstrate, so far as structural 
information is concerned, that the errors made are actually quite small. 

Table 1 shows structural parameters for a number of dimers and 
small organic molecules. These all-electron calculations were performed 
using the local density approximation with the V W N parameterization, 
and the "standard basis" option for density and orbitals of the 
FastStruct /SimAnn module (see below). The final column i n Table 1 
shows the percentage error as compared with experiment. For the most 
part, the errors are of the order of typical L D A errors. That is, the use of 
the functional in Eq. 1 in conjunction with a trial density constructed from 
spherically symmetric site densities does not involve much loss of 
significance in the results. 

Next we consider some transition-metal compounds invo lv ing 
first- and second-row transition metals. It has previously been 
demonstrated [2,3] that D F T - L D A calculations (using DMol ) give rather 
accurate structures for these compounds. In Table 2, we compared these 
earlier data w i th corresponding results obtained using the current 
approach (as implemented i n the FastStruct /SimAnn module) and with 
experimental data. The comparison does not yield a definitive measure of 
the difference between the simplified calculation and the Kohn-Sham 
limit because slightly different exchange correlation functionals were used 
(von Barth-Hedin for D M o l and V W N for F S / S A ) , and the orbital basis 
functions were also somewhat different (the "standard" option of the 
respective modules). Nevertheless, the close agreement between the two 
sets of calculations allows the conclusion that the relative simplicity of the 
trial density i n Eq . 7 does not obviate rather accurate calculation of 
structural parameters. 

F i n a l l y , we consider applications to larger organometall ic 
molecules. The structure of bis(N-methyl-5-nitrosalicylideneaminato) 
nickel(II) was determined recently by Kamenar et al [20]. This is a square 
planar N i compound with 41 atoms, as displayed in Figure 1. The 
F S / S A optimized structure of this molecule reproduces all the qualitative 
features of the experimental structure. To give a more quantitative 
comparison, selected bond distances and bond angles are presented in 
Table 3. As previously, the F S / S A results are close to the D M o l results, 
with a maximum difference of about 2% (in the C - N bond of the nitro 
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Table 1. Structures of dimers and small molecules 

System Calculated Exp. [4] Percent System 
Error 

L i 2 r(LiLi) 2.638 2.673 -1.3% 

Be2 r(BeBe) 2.535 2.49 1.8% 
B 2 r(BB) 1.630 1.60 1.9% 
c 2 r(CC) 1.232 1.24 -0.7% 
N 2 r(NN) 1.117 1.098 1.8% 
o 2 r(00) 1.249 1.208 3.4% 
F 2 r(FF) 1.409 1.412 -0.2% 
N a 2 r(NaNa) 2.957 3.078 -4.1% 
A l 2 r(AlAl) 2.478 2.466 0.5% 
S i 2 r(SiSi) 2.301 2.245 2.5% 
P 2 r(PP) 1.910 1.893 0.9% 
s 2 r(SS) 1.982 1.889 4.9% 
c i 2 r(ClCl) 2.089 1.988 5.1% 

C u 2 r(CuCu) 2.178 2.220 -1.9% 
LiF r(LiF) 1.594 1.564 1.9% 
NaCl r(NaCl) 2.346 2.361 -0.6% 
CuF r(CuF) 1.760 1.745 0.8% 
CuCl r(CuCl) 2.059 2.051 0.4% 
T i C l 2 r(TiCl) 2.148 2.170 -1.0% 

C H r(CH) 1.156 1.120 3.2% 
C H 2 r(CH) 1.059 1.029,1.078 2.9%,-1.8% 

<(HCH) 135.05 144.7,136.0 
C H 3 r(CH) 1.064 1.079 -1.4% 
C H 4 r(CH) 1.087 1.094 -0.6% 
C 2 H 2 r(CC) 1.185 1.203 -1.2% 

r(CH) 1.029 1.060 -3.0% 
C2H4 r(CC) 1.323 1.339 -1.2% 

r(CH) 1.054 1.086 -3.0% 
<(HCC) 122.71 121.2 

C 2 H 6 r(CC) 1.514 1.536,1.531 -1.5%, -1.1% 
r(CH) 1.066 1.091,1.096 -2.3%, -2.8% 
r(CH) 1.066 1.091,1.096 -2.3%,-2.8% 
<(HCC) 113.58 110.9 

C 6 H 6 r(CC) 1.372 1.399 -2.0% 
r(CH) 1.040 1.084 -4.2% 

CO r(CO) 1.143 1.128 1.3% 
C H 2 0 r(CO) 1.219 1.208 0.9% 

r(CH) 1.067 1.116 -4.6% 
<(HCO) 122.90 121.8 

C H 3 O H r(CO) 1.420 1.425,1.421 -0.4%,-0.1% 
r(CH) 1.069 1.094,1.094 -2.3%,-2.3% 
r(OH) 0.967 0.945,0.963 2.3%, 0.4% 
<(HCO) 109.16 108.5,107.2 
<(COH) 114.42 108.0,108.0 

CH 2 CO r(CO) 1.178 1.161 1.5% 
r(CC) 1.305 1.314 -0.7% 
r(CH) 1.066 1.083 -1.6% 
<(CCH) 120.32 118.7 

CO2 r(CO) 1.183 1.162 1.8% 

Continued on next page 
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Table 1. Continued 

System Calcu lated Exp . [4] Percent 
E r r o r 

C N r(CN) 1.169 1.175 -0.5% 
H C N r(CN) 1.148 1.154 -0.5% 

r(CH) 1.028 1.063 -3.4% 
C H 3 C N r(CN) 1.387 1.424 -2.7% 

r(CH) 1.066 1.101 -3.3% 
r(CN) 1.157 1.166 -0.8% 
<(HCN) 113.88 109.1 

HF r(HF) 0.967 0.917 5.5% 
C H 3 F r(CH) 1.064 1.098 -3.2% 

r(CF) 1.404 1.382 1.6% 
<(FCH) 111.59 108.5 

C H F 3 r(CH) 1.067 1.098 -2.9% 
r(CF) 1.383 1.333 3.8% 
<(FCH) 110.73 110.3 

C F 4 r(CF) 1.379 1.321 4.4% 

H 2 0 r(OH) 0.984 0.957 2.8% 
<(HOH) 111.00 104.5 

H2O2 r(00) 1.430 1.475,1.452 3.1%, 
r(OH) 0.986 0.950, 0.965 3.8%, 
<(HOO) 105.25 94.8,100.0 
<(HOOH) 120.19 119.8,119.1 

N H 3 r(NH) 1.005 1.012 -0.7% 
<(HNH) 115.71 106.7 

NO r(NO) 1.189 1.151 3.3% 
H N O 3 r(N=0) 1.253 1.206 3.9% 

r(N-O) 1.454 1.405 3.5% 
r(OH) 0.999 0.960 4.1% 
<(0=N=0) 130.51 130.0 
<(NOH) 106.56 102.0 

NOF r(NF) 1.501 1.520 -1.3% 
r(NO) 1.186 1.130 5.0% 
<(FNO) 110.96 110.2 

H2S2 r(SS) 2.126 2.055 3.5% 
r(SH) 1.375 1.327 3.6% 
<(SSH) 95.62 91.3 
<(HSSH) 90.38 90.6 

S i H 2 r(SiH) 1.561 1.516 3.0% 
<(HSiH) 92.23 92.1 

C4SH4 r(CS) 1.746 
r(C-C) 1.408 
r(C=Q 1.354 
r(CHl) 1.407 
r(CH2) 1.409 
<(CSC) 90.17 
<(SCC) 111.77 
<(CCC) 113.14 

S i 3 r(SiSi) 2.275 
<(SiSiSi) 90.64 
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Table 2. Geometries for selected First-Row Transition-Metal Compounds 

Molecule Parameter DMol [3] FS expt[3] 

ScF r(ScF) 1.795 1.775 1.787 

ScF 3 r(ScF) 1.833 1.815 1.91 

TiF 4 r(TiF) 1.747 1.735 1.745 

CI3T1CH3 r(TiC) 2.012 2.004 2.047 
r(TiCl) 2.174 2.150 2.185 
r(CH) 1.105 1.084 1.098 
<(ClTiC) 106.3 109.6 105.6 
<(HCTi) 108.1 109.1 109.0 

V O F 3 r(VO) 1.574 1.561 1.569 
r(VF) 1.721 1.718 1.729 
<(FVF) 110.7 108.5 111.2 

V O C L 3 r(VO) 1.573 1.548 1.570 
r(VCl) 2.131 2.117 2.142 
<(C1VC1) 110.8 111.5 111.3 

V F 5 r(VFax) 1.747 1.731 1.734 
r(VFeq) 1.712 1.715 1.703 

Cr02F 2 r(CrO) 1.567 1.572 1.575 
r(CrF) 1.702 1.708 1.720 
<(OCrO) 108.3 109.1 107.8 
<(FCrF) 110.4 115.7 111.9 

C1O2CI2 r(CrO) 1.568 1.573 1.581 
r(CrCl) 2.099 2.088 2.126 
<(OCrO) 109.2 110.7 108.5 
<(ClCrCl) 110.2 111.8 113.3 

[Cr04]-2 r(CrO) 1.661 1.662 1.66 

[Mn04]-1 r(MnO) 1.611 1.599 1.629 

Cr(CO)6 r(CrC) 1.869 1.866 1.909 
r(CO) 1.157 1.138 1.137 

Fe(CO)5 r(FeCax) 1.774 1.772 1.807 
r(FeCeq) 1.772 1.773 1.827 

r(CaxO) 1.152 1.136 1.152 
r(CeqO) 1.159 1.140 1.152 

Ni(CO) 4 r(NiC) 1.785 1.777 1.838 
r(CO) 1.154 1.136 1.141 
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Figure 1. Bis (N-^thyl-5-nitrosalicylideneandm Nickel (II) 
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Table 3. Selected bond distances and angles of bis(N-methyl-5-
nitrosalicylideneaminato) nickel(II) 

Parameter D M o l FS/SA expt[20] 

r(Ni-N) 1.88 1.88 1.925 
r(Ni-O) 1.82 1.82 1.826 

r (N-CH 3 ) 1.45 1.45 1.475 
r(N-C) 1.30 1.27 1.296 
r (0 2 N-C) 1.43 1.40 1.449 

r(O-C) 1.30 1.27 1.299 
r(N-O) 1.24 1.24 1.225 

r(C-Cben) 1.41 1.40 1.431 
r(Cben-Cben) 1.42 1.37 1.411 

a(0-Ni-N) 93.4 91.2 93.2 
a(Ni-N-C) 124.8 123.1 124.8 
a(Ni-OC) 131.0 130.8 131.0 
a(Ni-N-CH 3 ) 121.3 120.0 120.4 

group and the O-Ni-N bond angle), and both are in satisfactory agreement 
w i th the experimental values. 

4. Discussion and Conclusions 

Both the DMol and the FS/SA codes use numerical basis functions, 
but in the standard options of the codes, used in the above calculations, 
there are differences. FS/SA uses finite range functions that vanish 
identically beyond a given radius. This feature is not very important for 
open molecular systems, but allows a very substantial speed-up when very 
many neighbors must be taken into account (as when periodic boundary 
conditions are invoked, for instance). In addition, polarization functions 
are constructed differently and are sometimes absent in the FS/SA code 
where they are present in DMol (for the carbon atom, for instance). 
Whereas preliminary tests have shown that the FS/SA standard option is 
reasonably accurate, more careful work is needed to establish the 
consequences of basis error. The present calculations do suggest, 
nevertheless, that residual errors are very unlikely to be larger than a few 
percent and serve to establish clearly that the overall scheme yields 
structures that are close to the Kohn-Sham l imit (i.e., the structures that 
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would be obtained in a ful ly self-consistent, orbital basis converged Kohn-
Sham calculation). 

There are several factors that are important in understanding why 
the ansatz in Eq. 7 does not cause larger errors than are evident in these 
results. First, the Harris functional is relatively flat away f rom its 
stationary point. The quadratic error term for Ε and Eks has been analyzed 
in detail by Zaremba [21] and also by Finnis [10], who presented a direct 
comparison of the behaviour of Ek s and Ε away from a common stationary 
point. The larger curvature of Eks is related to the overshoot of the 
electrostatic potential that results when a density is made more, or less 
compact, which itself is connected w i th the inherent instability of the 
Kohn-Sham self-consistency cycle. 

The flatness of Ε explains to some extent why a simple ansatz like 
Eq. 7, which must be quite far from the true density (at least locally), gives 
a reasonable energy. However, it is a general observation that the absolute 
total energy given by the scheme is less accurate than the structural 
parameters. The reason for this is that structural information requires 
accurate tracking of changes that are local (in the sense that the energy 
differences refer to sets of nuclear coordinates that are close). Terms in the 
energy that are constant wi th in the particular geometry do not contribute 
to the forces and have no bearing on the structural information. Such 
terms may have to do wi th , for example, intra-site adjustments that have 
little influence on the variation of the chemical bonds that have formed. 
Such terms w i l l in general differ, however, when a global change such as 
the breaking of a strong chemical bond occurs. For this reason, the 
accurate calculation of absolute reaction energies may require a more 
careful optimization of the energy functional (whether this is Ε or Ek s) 
than a determination of the structure of local minima, or even of the 
reaction path joining these minima. The energy surface so determined 
can then be relatively easily adjusted by performing detailed Kohn-Sham 
minimisations for selected points along the path. 

The most obvious way of improving the total energy wi th in the 
present scheme is to extend the orbital and density bases and there are a 
number of ways in which this could be done. Alternatively, the energy 
can be improved via perturbation theory (by adding an estimate of the 
quadratic correction term[10]). This has the advantage that the simplicity 
and speed of the present method, which is more than adequate for most 
structural studies in molecules and periodic solids, would be retained in 
fu l l . 
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Chapter 27 

Density-Functional Calculations of Radicals 
and Diradicals 

Myong H. Lim, Sharon E. Worthington, Frederic J. Dulles, 
and Christopher J. Cramer1 

Department of Chemistry and Supercomputer Institute, 
University of Minnesota, Minneapolis, MN 55455-0431 

Open-shell molecules highlight some of the greatest strengths and 
weaknesses of density functional theory (DFT). When accurate 
geometries are used, doublet hyperfine couplings are in general well
-predicted by spin-polarized DFT calculations. However, for a series 
of 25 phosphorus-containing radicals, when geometries are optimized 
at the same level of theory as is used for the prediction of hyperfine 
couplings, no pure DFT functional does as well as either the UHF or 
UMP2 levels of theory with identical basis sets. However, hybrid 
HF/DFT runctionals do perform almost as well as MP2. In diradicals, 
on the other hand, the DFT formalism appears to account well for 
nondynamical and dynamical correlation effects that are not included 
in single-determinant Hartree-Fock theory. Singlet-triplet gaps are 
predicted well for a number of carbenes and nitrenium ions. Finally, a 
spin-annihilation procedure that involves the construction of a Slater 
determinant from DFT orbitals is shown to permit the accurate 
calculation of open-shell singlet energies. 

1. Introduction 

Open-shell molecules pose particular challenges for electronic structure 
methods. Within the context of Hartree-Fock (HF) theory, one may either pursue a 
restricted open-shell approach (ROHF) or alternatively an unrestricted approach 
( U H F ) (1). R O H F theory has the virtue that it produces wavefunctions that are 
eigenfunctions of the total spin operator S2—this is usually not the case for U H F 
theory. On the other hand, U H F theory permits spin polarization of the doubly-
occupied orbitals, where R O H F theory does not. 

The latter property is important in certain cases. For instance, i f an atom with 
a nucleus that has a magnetic moment lies in a nodal plane of the singly-occupied 
molecular orbital (SOMO) of a doublet, R O H F theory predicts the atom to have a zero 
1 Corresponding author 

0097HS156/%/0629-0402$15.25/0 
© 1996 American Chemical Society 
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electron spin resonance (ESR) hyperfine coupling constant (e.g., all of the atoms in 
the planar 2 A 2 " methyl radical). However, experiment verifies that spin polarization 
of the doubly occupied orbitals can cause a net spin density at nuclei in the nodal 
plane of the SOMO, i.e., non-zero hyperfine couplings are observed (2). 

Regrettably, by allowing for spin polarization, UHF theory also allows spin 
contamination, i.e., differentiation between the spatial parts of the alpha and beta 
orbitals causes electronic states of higher multiplicity to appear as artifacts in UHF 
wavefunctions. In cases where spin contamination is particularly severe, one-electron 
properties, e.g., hyperfine coupling constants, will be inaccurately predicted because 
of the poor quality of the wavefunction. Calculations on open-shell electronic 
structures thus manifest something of the truism that one cannot have one's cake and 
eat it too. 

However, an interesting feature of density functional theory that has been 
noted in the recent literature is that it seems to suffer minimally from spin 
contamination in its spin polarized (i.e., unrestricted) form (3-6). It is perhaps not 
surprising then that many groups have examined the performance of various density 
functionals for the prediction of hyperfine coupling constants (7-16) and other 
magnetic properties (16-18). Although Suter et al. identified limitations of DFT in the 
calculation of hyperfine coupling constants for the NH radical cation (15), its 
performance for a variety of other small molecules has been in general equal in quality 
to post-HF ab initio calculations. 

We recently examined a series of 25 phosphorus containing radicals with the 
goal of comparing the utility of UHF, projected UHF (PUHF), and second-order 
perturbation theory (UMP2) for the prediction of isotropic hyperfine coupling 
constants (19). Within this set of molecules, experimental measurements are available 
for 20 different 3 1 P couplings, 8 1 9 F couplings, 7 3 5 C1 couplings, and 5 *H 
couplings. High-level theoretical studies have also been reported for various members 
of the set. The first topic of this chapter will be an analysis of the performance of a 
variety of DFT functionals applied to this data set 

A second difficulty in working with open-shell systems can occur when the 
open-shell system is an excited state above a closed-shell ground state. In that case, it 
can be difficult to calculate accurately the excited state energy relative to that of the 
ground state. This is particularly the case in many one-center diradicals, e.g., 
methylene (20-24), where accurate calculation of singlet-triplet gaps has proven 
challenging. In particular, when there are low-lying excited states, the theory must 
adequately account for non-dynamical correlation and must do so in a consistent way 
for both the open- and closed-shell multiplets; naturally, it is also important to account 
consistently for dynamical correlation effects as well. These requirements render 
essentially useless any comparison between restricted Hartree-Fock (RHF) and UHF 
energies. Instead, more time-consuming approaches, e.g., multiconfiguration self-
consistent-field (MCSCF) or single-reference coupled cluster calculations including 
single, double, and perturbative triple excitations (CCSD(T)), must typically be 
employed. 

Since DFT functionals include correlation directly into the self-consistent-field 
(SCF) equations, they can in principle handle the multiplet splitting problem more 
efficiently that conventional molecular orbital techniques. That is to say, DFT 
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accounts for non-dynamical correlation not by the linear combination of two or more 
configurations (as in M C S C F approaches) but rather by construction of the functional 
for what is formally a single-configuration representation. We (5,25,26) and others 
(4,27-33) have examined this issue in a variety of molecular systems, and the second 
part of this chapter is devoted to this endeavor. 

Finally, D F T is a single-determinant theory in the sense that it is not possible 
to solve the D F T S C F equations for an intrinsically multiconfigurational electronic 
state. For example, open-shell singlet states must be represented by a linear 
combination of (at least) two configuration state functions. A s originally described by 
Slater (34), and developed more fully by Ziegler et al . (35), the energies of such 
states may be calculated via the approximate "sum method". A n alternative approach 
is to consider the construction of a Slater-determinant-type wavefunction from the 
D F T orbitals—with such a plan it might be preferable to refer to the subject orbitals as 
being "approximate Hartree-Fock molecular orbitals" (36). Once such a determinant 
is constructed, it is possible to apply spin annihilation operators to mixed-state 
wavefunctions in order to calculate excited states having the same spatial symmetry as 
the mixed-state wavefunction. A n example of this approach as applied to £-diazene 
(HN=NH) concludes the present chapter. 

2. M e t h o d o l o g y 

P r e d i c t i o n of E S R Isotropic H y p e r f i n e C o u p l i n g Constants . T h e 
calculation of E S R hyperfine couplings (hfs) has received considerable attention 
(10,37-51). The isotropic hyperfine coupling to nucleus Χ, αχ, is calculated from 

αχ = ( 8 π / 3 ) β β χ β β χ ρ ( Χ ) , (1) 

where g is the electronic g factor, β is the Bohr magneton, gx and βχ are the 
corresponding values for nucleus X , and p(X) is the Fermi contact integral which 
measures the unpaired spin density at the nuclear position. When the spin density is 
expanded in a finite basis set, the Fermi contact integral is evaluated from 

PCX) = Σ Ρμ" ν
Ρ Φμ(*χ) Φν(*χ), (2) 

μν 

where Ρ α _ β is the one-electron spin density matrix, the summation runs over all basis 
functions φ, and the evaluation of the overlap between elements μ and ν is only at the 
nuclear position, Κχ. The one-electron spin-density matrix is available for a wide 
variety of methodologies, including semiempirical theory (44,48,52,53), U H F and 
R O H F theory, post-Hartree Fock treatments using many-body perturbation theory 
(MP2) (40,41,49,54-56) and configuration interaction (CI) (38,39,42,43,46,54,57-
67); more recent work has examined D F T (7-14). This chapter examines R O H F and 
several hybrid and pure D F T methods for a data set of 25 phosphorus-containing 
molecules, as described further below. 

S p i n A n n i h i l a t i o n o f D F T Wave funct i ons . In spin-polarized D F T 
calculations, open-shell singlet energies can be estimated by a statistical 
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approximation under certain circumstances ("statistical exchange approximation" was 
the term used by Slater for Χ α calculations—the generalization of Ziegler et al. is 
more properly referred to as the "sum method") (34,35). This procedure makes use 
of the 50:50 determinant 

50:50, Ψ = [φ α (1)α(1)φ*(2)β(2) - φ α(2)α(2)φ^(1)β(1)] , (3) 

where 1 and 2 are the indices of the unpaired electrons occupying orbitals φ α and cp&. 
The 50:50 superscript emphasizes that this configuration is an equal combination of 
the open-shell singlet and the Sz = 0 triplet, provided the two pure spin states are 
characterized by the same spatial orbitals. 

When the Hamiltonian contains no spin-dependent terms, the separation 

(50:50ψ ι H ι 50:50ψ) = I ( (3ψ 0 | | % 0 ) + (*ψ | | *ψ) ) <4> 

may be accomplished. One may thus estimate the energy of the open-shell singlet 
from the readily calculated expectation value of the Hamiltonian operating on the 
50:50 and triplet configurations. 

A n alternative method for calculating the open-shell singlet energy involves 
application of the annihilation operator As+\ defined by (68) 

A*+1 " [φ + ι ) ] - { ( ί + ΐ ) [ ( ί + ΐ ) + ι ] } ' ( 5 ) 

where S is the total spin operator, s is the desired total spin, and 5+1 is the 
contaminant (next highest) spin state to be annihilated. Although initially employed 
for the calculation of U H F energies (69,70), the operator may also be applied to a 
determinant formed from Kohn-Sham orbitals, in which case the spin-annihilated 
energy is calculated as 

*PDFT = 5 ° - 5 W ^ < Y 0 s U i + 1 < s > · ( 6 > 

That is, the energy of the 50:50 state is calculated in the conventional way, i.e., by 
plugging in α and β densities to the D F T energy expression. The spin-annihilation 
correction, however, is calculated using matrix elements of the Schrôdinger 
Hamiltonian and the spin-annihilation operator expressed in the K S M O basis (36). 
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General. For the phosphorus-containing radicals, molecular geometries were 
ful ly optimized at the U H F , R O H F , U M P 2 , and several D F T levels of theory 
employing the 6-31G** basis set (71-74). The nature of a l l stationary points was 
verified by analytic calculation of harmonic frequencies (75). Calculation of isotropic 
hyperfine splittings (hfs) values was accomplished with equations 1 and 2 above, using 
the 6-311G** basis set (76) with one-electron spin-density matrix elements taken from 
R O H F and D F T wavefunctions. For anions, the 6-311++G* basis set (77) was also 
employed, but the effects on calculated hfs values were insignificant, and they are not 
reported here. The hfs calculations were carried out for geometries optimized at several 
different levels of theory. Details of the error analysis and a more complete description 
of the experimental data are available in a prior publication (19). We have examined 
elsewhere issues associated with other choices of basis set, and note here only that the 
6-311G** basis has been found to optimally balance efficiency and accuracy in our 
studies (41). 

Methylcarbene and -nitrenium geometries were optimized at the H F (restricted 
for singlet, unrestricted for triplet) level of theory with the c c -pVDZ basis set (78)—Cs 

methylnitrenium singlet spontaneously fragments to H2 and H C N H + at all other levels 
of theory examined. Since our focus is on S-T gaps, the H F geometries were used for 
single-point calculations with other levels of theory. Dimethylcarbene and -nitrenium 
geometries were optimized at the D F T and complete-active-space self-consistent-field 
(79,80) ( C A S S C F ) levels of theory with the c c - p V D Z basis set (78). Construction of 
C A S S C F active spaces is described in Section 4. Additional D F T single point 
calculations were performed either using the c c - p V T Z basis set (78) or the c c - p V Q Z 
basis set (78) with g functions removed; multireference second order perturbation 
theory (81-83) ( C A S P T 2 N ) and coupled-cluster calculations including al l single, 
double, and perturbative triple excitations (CCSD(T)) were also carried out (84-87). 

E-Diazene geometries (C2/1) were optimized and energies calculated at the D F T 
level using the c c -pVDZ and cc -pVTZ basis sets. 

Several D F T functionals were employed, combining either Χ α local exchange 
or Becke's (B) non-local exchange functionals (88) with either the local correlation 
functionals of Vosko, Wi lks , and Nusair (89) ( V W N or V W N 5 ) , or the non-local 
alternatives developed by Lee, Yang, and Parr (90) ( L Y P ) , or Perdew (91) (P). 
Reference is also made to another nonlocal exchange method of Perdew and co
workers, P W (92). Adiabatic connection method functionals combining Becke's non
local functional with some H F exchange (B3) were also employed (93). Calculations 
were carried out using the M O L C A S (94), G A M E S S (95), and G A U S S I A N 92 /DFT 
(96) program suites. 

3. Phosphorus-Containing Radicals 

The 25 phosphorus-containing radicals examined are illustrated in Figure 1. 
Table 1 summarizes errors and linear regressions of the predicted isotropic hyperfine 
coupling constants from different levels of theory on the experimental data; this table 
includes analyses of data for hfs values calculated at the U H F and U M P 2 
geometries as well (said hfs values together with all geometrical data are available 
from the authors on request but, for reasons of space, they are not presented here). 
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Figure 1 . 25 molecules for isotropic hyperfine coupling constant calculations. 

Figure 2 plots calculated data against experimental data for the 
BLYP/6-311G**//BLYP/6-31G** level of theory. 

Several trends in Table 1 are worthy of note. To begin, the predicted 
hyperfine couplings that most closely match the experimental data are obtained from 
the hybrid functionals B3P and B3LYP. The mean unsigned error with these 
functionals is minimized for calculations employing the MP2 geometries. However, 
the predicted data are better correlated with the experimental data by linear regression 
when UHF geometries are employed. This situation arises because errors in 
calculated values using the UHF geometries are more consistently under-estimations 
(and are hence correctable) than is the case when MP2 geometries are employed. For 
self-consistently optimized geometries, the mean unsigned error for these functionals 
remains roughly the same as for UHF geometries; the linear regressions are 
somewhat degraded, however. For comparison purposes, we note that for this data 
set these two functionals predict isotropic hyperfine coupling constants about as well 
as MP2//MP2 calculations, but considerably less well than MP2//UHF calculations 
(the latter having a mean error of -10.5 G, a mean unsigned error of 16.5 G, a 
correlation coefficient R = 0.9986, and a standard error in the linear fit of 18.2 G) 
(19). 

Slightly lower quality predictions are obtained from ROHF calculations, 
which are not particularly sensitive to the geometry employed. Of course, in many 
instances the ROHF method predicts zero hfs because the atom(s) in question lie(s) in 
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- 2 0 0 2 0 0 6 0 0 1 0 0 0 1 4 0 0 1 8 0 0 

Theory 

Figure 2. Experimental vs. calculated isotropic hyperfine couplings (Gauss) at the 
B L Y P / 6 - 3 1 1 G * * / B L Y P / 6 - 3 1 G * * level. The ideal Une of unit slope and zero intercept 
is also shown. The inset expands the region from - 5 0 to 100 Gauss. 

the nodal plane of the S O M O (e.g., PF2, H2PO4, PCI2, PCI2O2, etc.)—this can 
cause significant disagreement when spin polarization gives rise to sizable couplings 
for these atoms (e.g., ap = 68 G in PCI2). Nevertheless, when this artifact does not 
pose a problem, the performance of this method may make it attractive given that the 
R O H F wavefunction is an eigenfunction of the total spin operator (i.e., a pure 
doublet). 

A further increase of about 20% in the standard error for the linear regressions 
is observed when pure D F T functionals are used for hfs prediction at the U H F and 
U M P 2 geometries. A very large increase in the error is observed for pure D F T 
calculations carried out at the DFT-optimized geometries—this error is especially 
severe for the B L Y P and B V W N functionals. For the B L Y P functional, we observe 
most P - X bond lengths to be considerably lengthened compared to M P 2 values: on 
average, P - H bonds are 0.031 À longer (11 data), P - F bonds are 0.030 À longer (10 
data), P - C l bonds are 0.061 À longer (10 data), P - 0 bonds are 0.024 Â longer (14 
data) and P-S bonds are 0.043 À longer (7 data). 

The largest source of error, however, is associated with the failure of the 
B L Y P and B V W N functionals to accurately predict even gross features of the 
molecular geometries for several of the radicals. PCI4 offers perhaps the best 
example. Experiment indicates this molecule to have C2v symmetry, with two 
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410 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

chlorine atoms axially disposed in a trigonal bipyramid, and the remaining two 
chlorine atoms equatorially disposed (97). The unpaired electron is localized 
predominantly in the remaining equatorial position. Calculations at all other levels of 
theory are consistent with this observation, predicting an angle at phosphorus of 
between 140 and 150 degrees between the two apical P-C bonds (i.e., there is some 
compression into the space occupied by the unpaired electron). Within the constraints 
of C2v symmetry, however, the BLYP and BVWN geometries relax to structures 
having Td symmetry. This causes an error of over 500 G in the predicted 3 1 P 
hyperfine coupling constant (expt. 1233 G). Moreover, if symmetry constraints are 
completely relaxed, the molecule dissociates into a van der Waals complex of PCI3 
and a chlorine atom! Similar distortions are observed for F P O 3 - , PCI2FS-, P O 4 2 - , 

P O S 3 2 - , and P S 4 2 - , although in several of these instances the situation is rendered 
more complicated because some functionals predict changes in the symmetries of the 
electronic ground states. These qualitative inaccuracies in describing the electronic 
structures are reminiscent of those observed by Ruiz et. al. (98) for Mulliken charge 
transfer complexes. 

The errors in the PCI4 geometry vary widely depending on which functional 
is employed. When Becke's non-local exchange functional (B) is employed, the 
Clax-P-Clax bond angle is always reduced (i.e., more in error) compared to Slater or 
Χ α exchange. Even for those combinations of functionals that do not predict the Td 
structure to be the lowest energy available within C2v symmetry, the energy 
separation between the optimized geometry and the Td geometry ranges from 0.5 to 
3.7 kcal/mol at the DFT/cc-pVDZ level. At the MP2/cc-pVDZ level, this energy 
difference is 6.3 kcal/mol. The best DFT results occur when the non-local PWP 
functional is used. Here we note the work of Eriksson (99) whose PWP calculations 
predict a Clax-P-Clax bond angle of 140.4 degrees (slight compression compared to 
UHF = 149.2 degrees); however, at this geometry, the PWP 3 1 P hfs value is still 
significantly overestimated (1488.2 G) compared to that calculated for the UHF 
geometry (1319.7 G). 

We highlight these results because Eriksson et al. have compared the PWP 
functional to others (11) (including some of those used here) and in particular have 
done so for PF2 and PCI2 (100). Based on analysis of the spatial distribution of 
unpaired spin density, they have emphasized that, relative to the local density 
approximation (LDA), the non-local PWP functional redistributes spin from the 
inner-valence region to both the core and the outer valence regions—the former effect 
generally leads to an increase in calculated hyperfine couplings which improves their 
agreement with experiment. Laidig has emphasized that the LDA, VWN, Β, Ρ and 
LYP functionals all fail to adequately "push" electron density into the outer regions of 
atoms and molecules (101). The PW and/or Ρ functionals appear to correct this 
problem to some extent, although it is not clear that this has any significant impact on 
the predicted hfs values. Further work with this functional in the area of prediction of 
isotropic hyperfine coupling constants will be particularly interesting. 

To conclude this section on a practical note, we note that the B 3 L Y P and B3P 

methods predict isotropic hyperfine coupling constants only slightly less accurately 
than M P 2 calculations when UHF geometries are employed. Accuracy is degraded 
when geometries optimized at these DFT levels are employed, but remains improved 
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27. L I M ET AL. Density-Functional Calculations of Radicals & Diradicals 411 

over any other fully DFT approach. This is due in part, presumably, because 
inclusion of some Hartree-Fock exchange does cause the geometries to more closely 
resemble those calculated at the UHF level. Since the DFT calculations scale more 
efficiently than MP2, these methods will be the most cost-effective for large 
molecules. Barone (14) has come to a similar conclusion for diatomics containing H, 
B, C, N, O, and F atoms, which suggests that the utility of these hybrid functionals 
for hfs prediction is not limited to the present phosphorus-based data set. 

4. Singlet-Triplet Gaps in Carbenes and Nitrenium Ions 

Methylene (CH2) has a long history as a subject of theoretical studies (20-
24,102). Isoelectronic nitrenium ( N H 2 + ) has also been examined (103-105). Of key 
interest is the accurate prediction of the S-T gaps in these systems. We (5,25,26,106) 
and others (4,27-33) have explored the efficacy of DFT in this regard, both for these 
simple parent systems, and for substituted versions. In general, modern DFT 
functionals appear to be remarkably accurate in accounting for the differential non
dynamic correlation in the two multiplets, and give excellent agreement with either 
experimental values (when available) or very high level ab initio calculations. 

One question of fundamental interest is how substitution affects the S-T gap 
in these systems (21,107-109). We have focused in earlier work on phenyl 
substitution (5,106) and incorporation of the hypovalent center into a three-membered 
ring (26). Here we examine the more subtle effects of mono- and dimethyl 
substitution, with the additional goal of comparing DFT predictions against other 
trustworthy levels of theory. Prior studies of these two carbenes (21,107,108,110-
119) and two nitrenium ions have appeared (104,106), although none have employed 
DFT. 

In order to facilitate comparisons between different theoretical methods, the 
same geometries were used for all levels of theory. Key geometrical parameters are 
listed in Table 2. For methylcarbene and methylnitrenium, HF geometries were used 
because at all other levels of theory singlet methylnitrenium (Cs) spontaneously 
fragments to H2 and HCNH+—for methylcarbene, the effect on the S-T gap of 
geometry optimization at higher levels of theory is expected to be fairly small, but it is 
important to recognize that the results discussed below should not be regarded as 
quantitative. For the dimethyl-substituted cases, MCSCF(2,2) geometries were used 
(the active space correlates the two nonbonding orbitals on the hypovalent center)— 
the triplets have C2v symmetry and the singlets have C2 symmetry (118,119). 
Optimized DFT geometries (not reported here) were similar overall to those obtained 
at the CAS level, except that the triplet bond angle is predicted to be 4 to 5 degrees 
larger. This apparent overestimation has been noted (25) for methylene and nitrenium; 
the effect of angle widening is to stabilize the triplet over the singlet by 1 to 1.5 
kcal/mol more than is found for the MCSCF geometries. One geometric trend worthy 
of note is that the bond angle at the hypovalent center is always larger for the 
nitrenium ion than for the corresponding carbene. This may be attributed to the 
tendency for the more electronegative (cationic) nitrogen to mix more s character into 
hybrid orbitals used to make σ bonds to its substituents than does carbon. 
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412 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Table 2. Geometries employed for carbenes and nitrenium ions 

Molecule State Level of Theory* r X Q À r X H , A Z C X Y , deg 

C H 3 C H 

(X=C,Y=H) 

C H 3 N H + 
(X=N,Y=H) 

3A" 

H F 

H F 
H F 

H F 

1.487 1.106 105.5 

1.485 1.083 131.4 
1.364 1.027 112.1 

1.442 1.024 150.4 

C H 3 C C H 3 

(X=C,Y=C) 

C H 3 N C H 3 + 
(X=N,Y=C) 

3 B i 

CAS(2,2) 

CAS(2,2) 
CAS(2,2) 

CAS(2,2) 

1.493 

1.490 
1.396 

1.445 

111.1 

129.0 
119.7 

144.3 

a A l l calculations employed the c c -pVDZ basis set 

S-T gaps calculated at various levels of theory are collected in Table 3. The 
measured S-T gaps for methylene (120,121) and nitrenium (122) are 9.1 and 30.1 
kcal/mol, respectively. For both the mono- and dimethyl-substituted systems, the S-T 
gap remains larger for the nitrenium than for the carbene. In addition, the singlet 
becomes the ground state for dimethylcarbene at the D F T levels of theory. We now 
compare the predictions from different levels of theory, and then discuss the effects 
of methyl substitution. 

The S-T gap in methylcarbene changes by only 1 kcal/mol when the M C S C F 
active space is increased from a simple (2,2) calculation (correlating the two 
nonbonding orbitals on the carbene carbon) to a (12,12) calculation (correlating the 
ful l valence space). A t the C A S P T 2 level, this difference is reduced to 0.5 kcal/mol, 
indicating that in this instance perturbation theory successfully corrects for some of 
the inadequacies in the (2,2) space in addition to accounting for some dynamic 
correlation. The situation for methylnitrenium is less well behaved—increasing the 
active space decreases the S-T gap by 3.5 kcal/mol at the M C S C F level and by 8.0 
kcal/mol at the C A S P T 2 level. The cationic charge has the effect of reducing the total 
energy spanned by the occupied (and virtual) valence orbitals, and this presumably 
makes it increasingly important to more completely optimize them. For both 
methylcarbene and methylnitrenium, the best C A S P T 2 gaps are about 3 to 5 kcal/mol 
larger than those calculated at the C C S D ( T ) level. This is quite consistent with the 
situation observed for methylene, where C A S P T 2 overstabilizes the triplet by about 3 
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27. L I M ET AL. Density-Functional Calculations of Radicals & Diradicals 413 

Table 3. Singlet-triplet gaps for carbenes and nitrenium ions a 

S-T gap, kcal/mol 

Molecule Level of Theory* X = C X=N+ 

C H 3 X H CAS(2,2) 7.9 20.2 
CAS(12,12) 8.9 16.7 

CASPT2N(2,2) 11.3 24.4 
CASPT2N(12,12) 10.8 16.4 

CCSD(T) 7.3 13.2 
B V W N 5 4.9 7.4 

B L Y P 5.1 7.8 

CH3XCH3 CAS(2,2) 3.8 15.9 
CASPT2N(2,2) 6.1 10.9 

CCSD(T) 1.8 8.6 
B V W N 5 - 0 . 3 2.9 

B L Y P - 1 . 0 2.3 

a Using the geometries found in Table 2. b A l l calculations employed the 
c c - p V D Z basis set 

kcal /mol (82,83,123), and where C C S D ( T ) agrees well with experiment. The S-T 
gaps predicted by D F T , on the other hand, are considerably lower than the C C S D ( T ) 
values. For methylnitrenium, in the absence of experimental data, there are 
insufficient high-quality computational results with which to compare in order to 
evaluate the relative accuracies. For methylcarbene, however, several other studies 
exist (21,107,108,110-115,118). Based on an analysis of other calculations, and on 
their own high-quality generalized valence bond ( G V B ) C I calculations, 
Khodabandeh and Carter (115) conclude that the S-T gap of methylcarbene is 3 ± 2 
kca l /mol , which provides more support for the D F T predictions than for the 
C C S D ( T ) value. This agreement improves for D F T when the basis set is enlarged: 
the B V W N 5 and B L Y P predicted S-T gaps are 4.1 and 3.9 kcal/mol, respectively, 
with the c c - p V Q Z basis set (these numbers are converged based on comparison to 
c c - p V T Z values). Moreover, as noted above, complete geometry optimization further 
stabilizes the triplet by roughly 1 kcal/mol. The larger gaps predicted by the other 
levels of theory may be associated with one or more of the following (i) greater 
sensitivity to an incomplete basis than is observed for D F T , (ii) less adequate 
accounting for dynamic correlation, and (iii) greater sensitivity to geometric 
inaccuracies. The second explanation seems likely to be associated with the bulk of 
the difference, given the results of Khodabandeh and Carter (115). 
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In the dimethylated cases, the situation is similar in many respects. Although 
it would be interesting to compare the (2,2) active space to the full-valence CAS, this 
calculation is presently impractical. Attempts to use a (6,6) active space including the 
heavy atom sigma bonds proved problematic and were not pursued extensively. For 
dimethylcarbene compared to methylcarbene, there is a slight increase in the 
disagreement between the best CASPT2 prediction and that obtained at the CCSD(T) 
level. This difference is near the maximum in the range for the systematic error in S-T 
gaps discussed by Andersson et al. (82,83,123). Once more, the DFT predicted S-T 
gaps for both molecules are smaller than those found at the CCSD(T) level; this 
difference is sufficient to cause DFT to predict dimethylcarbene to have a singlet 
ground state. The predicted DFT gaps agree very well with the MRCI+Q results of 
Matzinger and Fulscher (118) and the CCSD(T)/TZ2P+f results of Richards et al. 
(119); the latter calculations predict a singlet ground state with a gap of -0.9 and -0.8 
kcal/mol, respectively. Agreement between the two DFT functionals is again good, 
and the S-T gaps are very nearly converged with respect to basis set size: changes no 
larger than 0.4 kcal/mol are observed on going to the cc-pVTZ basis set. This is in 
contrast to the CCSD(T) level of theory. Our cc-pVDZ results mirror polarized 
double-ζ results of Richards et al. (119), but the latter workers observed the gap to 
change by 2.7 kcal/mol (in favor of the singlet) on going to a doubly-polarized triple-
ζ basis set. 

As for the chemical effects of substitution, it has been argued that the S-T gap 
of methylcarbene is reduced by comparison to carbene because the singlet is stabilized 
by hyperconjugative interactions (i.e., π donation) with the methyl group 
(21,107,108). Destabilization of the singlet, on the other hand, may compete because 
of steric interactions between the two groups on the hypovalent center: as discussed 
by Carter and Goddard (109), bond-angle widening decreases the amount of p 
character in the associated σ bonds, thus reducing the s character available to the 
doubly-occupied nonbonding orbital. Khodabandeh and Carter (115), based on a 
detailed analysis of their GVB-CI results, discount the importance of these two 
effects for methylcarbene, however, and emphasize that the methyl group destabilizes 
the triplet by (i) decreasing the p character in the in-plane SOMO, (ii) reducing 
electron donation to the electrophilic hypovalent center, and (in) raising the energy of 
the π-like SOMO by repulsive orbital interactions. While these effects probably also 
influence the methylnitrenium S-T gap, it is apparent that hyperconjugation plays a 
more significant role in this instance. In the singlet, the N-C bond length is reduced 
by 0.08 Â compared to the triplet, consistent with considerable π character in this 
bond (note that in methylcarbene, the C-C bond lengthens on going from triplet to 
singlet, consistent with decreased s character in the σ bond). Moreover, the effect of 
methyl substitution on the S-T gap is considerably larger in the nitrenium case than in 
the carbene: the nitrenium singlet is stabilized by roughly 23 kcal/mol and the carbene 
singlet by about 5 kcal/mol (based on comparison of the DFT predictions for MeXH 
to experimental values for X H 2 ) . This observation is consistent with the nitrenium 
nitrogen being a much more aggressive π acceptor than the carbene carbon. Such 
differential π acceptance has also been noted for phenyl substitution (5). 

On attachment of a second methyl group, both the carbene and nitrenium S-T 
gaps are further reduced by about 5 kcal/mol. Hence, for the carbene case, there 
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appears to be little i f any steric destabilization of the singlet (109). The effect of the 
second methyl substitution on the nitrenium S-T gap, on the other hand, is much 
smaller than that of the first One interpretation would be that the accepting ability of 
the methylated nitrenium ion singlet is no better than the methylated carbene (i.e., one 
methyl group "saturates" the difference associated with the positive charge in the 
nitrenium). However, the observed angle widening and the crowding imposed by 
shorter heavy-atom bonds in the nitrenium singlet (compared to the carbene) may 
indicate that there is here some competition between sterics and hyperconjugation in 
the singlet. 

In conclusion, for identical geometries, MCSCF and CASPT2 methods 
predict S-T gaps 3 to 5 kcal/mol larger than those found at the CCSD(T) level. The 
latter theory itself predicts gaps that are 1 to 6 kcal/mol larger than those found at the 
DFT level. For the case of methylcarbene, where the highest-quality calculations at 
other levels of theory are available, DFT appears to provide the more reliable results. 
Although the separate effects of hyperconjugation and sterics on the S-T gap of 
methylcarbene have been assigned to be minimal (115), hyperconjugation plays a 
dominant role in the more aggressively electrophilic nitrenium ions, and steric 
destabilization of the singlet state is observed for dimethylnitrenium. 

5. Spin Annihilation of Kohn-Sham-orbital-based Slater Determinants 

Back et al. have measured the near-UV spectrum for the symmetry-forbidden 
UBg -*— l * A g transition in £-diazene (124,125). CI calculations have been 
performed for several excited states of this system, both at the semiempirical (126) 
and ab initio (127-132) levels. We here compare to the latter studies by examining the 
relative energies of the ground state singlet, triplet ( 3 B g ) , and first-excited-state 
singlet as calculated at the UHF and BLYP levels. The excited-state (open-shell) 
singlet energies are calculated using the spin annihilation technique described in 
Section 2 and also using the sum method of Ziegler et al. (35). 

Optimized geometries for the various states using the cc-pVDZ basis set 
within the constraints of Cih symmetry are provided in Table 4. Experimental bond 
lengths have been determined from N2 matrix IR data (133), and the HNN angle 

Table 4. Optimized geometries for £-diazene 

Level of Theory Electronic State r N N . A ΓΝΗ,Α ZHNN, deg 

UHF 1.215 1.020 107.3 

3 B g 1.254 1.010 120.3 

50:50Bg 1.253 1.007 120.3 

BLYP 1A, 1.262 1.058 105.2 

3 B g 1.289 1.033 118.4 

50:50Bg 1.289 1.035 118.6 

Experiment 1A, 1.252 1.028 106.9 
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Table 5. Excited state energies for £-diazene (kcal/mol) 

Electronic State C2h Geometry U H F B L Y P 
J A g (vertical) 45.1 49.7 
3 B g (relaxed) 34.9 41.0 

sum method lBg *Ag (vertical) 75.3 64.9 
SftSOBg (relaxed) 65.3 56.1 

annihilated ! B g 
lA% (vertical) 55.4 64.8 

50=50Bg (relaxed) 44.9 55.7 

from gas-phase IR data (134). The B L Y P level provides the better prediction for 
r N N , while the U H F level is somewhat better for the remaining two parameters. 
Although the *Bg state has not been optimized (a manual optimization would be 
required) it is clear from the similarity of the 50:50 mixed singlet/triplet structure to 
the triplet structure that the pure open-shell singlet should be very similar in 
geometry. Geometrical parameters calculated at the U H F level for the 5 0 : 5 0 B g state 
agree closely with those reported by D e l Bene et al . (132) from UHF/6 -31+G** 
calculations. 

Vertical and relaxed (Ç21Ï) excitation energies from single-point calculations 
using the c c - p V T Z basis set are compiled in Table 5. For this system, the excited-
state singlet energies at the B L Y P level differ only very slightly for the two methods 
of calculation—this is not the case at the U H F level, where large differences are 
observed, and these U H F results are not discussed further. Experimental data are not 
available for the triplet, but the predicted value for the vertical excitation at the B L Y P 
level may be compared to those calculated at the M R C I levels by Vasudevan et al . 
(127) and K i m et al . (135), namely 47.7 and 60.7 kcal /mol , respectively. The 
discrepancy between the two M R C I results is surprisingly large. Although our B L Y P 
results are in much better agreement with the predictions of Vasudevan et al . , this 
excitation awaits experimental resolution. 

The absorption maxima in the near-UV spectrum occur over a range of 78.4 
to 83.0 kcal/mol (124,125). Vasudevan et al . (127) suggested this region to be blue-
shifted relative to the "usual" vertical transition since in the absence of an inducing 
mode the transition moment for this forbidden excitation would be expected to be 
zero. Peric et al . (128) performed a complete vibrational analysis at the M R C I level 
and concluded that one quantum (3120 c m - 1 , 8.9 kcal/mol) of excitation in the 
asymmetric N - H stretching mode ( V 5 ) afforded good agreement with the various 
vibrational progressions in the experimental spectrum. Back et al . (125) refined and 
reinterpreted their spectroscopic data on the basis of the theoretical calculations and 
agreed that the vertical separation between the two singlet potential energy curves 
should be 71.8 ± 2.3 kca l /mo l . The present B L Y P results underestimate this 
value by about 10%. This may be compared with the M R C I results of Vasudevan et 
al . (127) and K i m et al . (135), in this case 68.5 and 81.8 kcal /mol , respectively. 
Again there is significant disagreement between the two M R C I studies, although it is 
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perhaps noteworthy that they predict a very similar energy separation between the two 
B g multiplets, suggesting that one or the other set of calculations may be unbalanced 
in its description of the ground state. 

Finally, the experimental value for the l ! B g ««— l ! A g To transition (i.e., 
from lowest vibrational state to lowest vibrational state) is 59.4 ± 3.5 kcal/mol (125) 
(again including one vibrational quantum in vj)—accounting for differential zero-
point energies (128,135) leads to a Te value of 61.8 kcal/mol. This number may be 
compared to the relaxed calculations in Table 5, and it is seen that the BLYP 
calculations are in fair agreement (the BLYP comparison ignores torsional relaxation 
of the excited-state singlet, which lowers the predicted Te by about 1.5 kcal/mol 
(128,131,132)). The MRCI calculations of Peric et al. (128) and Kim et al. (135) 
predict Te values of 58.9 and 70.3 kcal/mol, respectively. 

The BLYP functional was originally chosen for this study because of its 
impressive performance in calculating the 1*BU * — l J A g vertical transition for 
s-trans 1,3-butadiene (36) (expt. 5.9 eV, predicted 6.1 eV), an excitation that has 
proven quite challenging for other levels of theory (and which furthermore provides 
an example of an excitation where the spin-annihilation technique provides much 
more reliable results than the statistical approximation). Performance of the BLYP 
functional in the case of E-diazene is slightly less satisfactory, and it may be that a 
different functional would be more efficacious. We are continuing to examine the 
issue of functional utility in this and other chemical systems with respect to the 
calculation of excited-state-singlet energies. However, it is worth emphasizing in 
closing that the spin-annihilated DFT calculations are considerably less costly than the 
MRCI calculations to which they have been compared, so from an efficiency 
standpoint, somewhat increased errors may be acceptable depending on the chemical 
questions under investigation. 

6. C o n c l u s i o n s 

Accurately accounting for unpaired spin density and its effect on one-electron 
properties can be challenging for any theoretical method. In doublets, one measure of 
the quality of electronic structure is the accuracy of predicted hyperfine splittings. For 
accurate molecular geometries, we and others have noted the efficacy of spin-
polarized DFT calculations. However, for the series of 25 phosphorus-containing 
radicals presented here, inadequacies in DFT-optimized geometries lead to a 
significant degradation in the quality of predicted hyperfine splittings compared to the 
UHF or UMP2 levels of theory; hybrid HF/DFT functionals, however, perform 
about as well as MP2 under these circumstances. 

Moving from one unpaired electron to two, DFT appears to capture significant 
nondynamical and dynamical correlation effects that are not included in single-
determinant Hartree-Fock theory, and that are difficult to account for consistently 
with single-reference or multireference correlation approaches. For methyl- and 
dimethylcarbene and -nitrenium, the performance of two DFT functionals appears to 
be superior to MCSCF, CASPT2, and CCSD(T) calculations. However, 
experimental data are not yet available for these systems. Until such data are 
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available, additional calculations using multireference CI approaches would clearly be 
desirable in order to further evaluate this contention. 

Finally, the calculation of open-shell singlet energies by application of a spin-
annihilation procedure to a Slater determinant formed from DFT orbitals appears to be 
promising as an efficient alternative to more computationally demanding procedures. 
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Chapter 28 

Density-Functional Approaches for Molecular 
and Materials Design 

E. Wimmer 

Biosym/Molecular Simulation, Pore Club Orsay Université, 
20 rue Jean Rostand, 91893 Orsay Cedex, France 

Density functional theory has become a practical and increasingly 
more widely used tool in molecular and materials design. This is due to 
three characteristics of this approach: (i) it enables accurate quantum 
mechanical calculations on fairly large molecules and unit cells; (ii) the 
theory is universal in the sense that it can be applied not only to solid 
state systems, but also to organic molecules, organometallic 
compounds, and surfaces, and (i i i ) the computational effort is 
reasonable. The practical implementations of density functional theory 
are based on the local density approximation, sometimes including 
generalized gradient corrections to improve the absolute values of 
binding energies. The capabilities of this approach are illustrated by 
the bonding of a silane molecule to a reconstructed Si(001) 2x1 
surface, where cluster calculations show a rather localized nature of the 
molecule-surface interactions. Calculations of the adsorption geometry 
and the energetics of an ammonia molecule on a CuO(111) surface 
reveals that the N - C u bond on a C u O surface is about one order of 
magnitude weaker compared with that in the Cu-tetrammine complex. 
This has significant consequences for the design of protective coatings 
for C u surfaces. The final example shows the capability of density 
functional theory to predict equilibrium structures of fairly complex 
solids such as LaNi5. 

The discovery of molecules and materials with novel functional properties continues 
to be one of the most fascinating areas of scientific research and it is essential for 
meeting the growing demands of our industrialized societies in an era of changing 
economic conditions and increasing environmental concerns. The complexity of 
modern materials, the constraints on their production and processing, and the rising 
cost of experimental research make it mandatory to rationalize the research and 
development strategies by rapid pre-screening of all possible molecular and materials 
design options and by focusing as quickly as possible on the most promising 
candidates. The targeted performance characteristic of a molecule such as its binding 
strength to a surface or the ability of a compound to store hydrogen is just one of the 
conditions that need to be met for a successful molecular and materials design. In fact, 

0097-6156/96/0629-0423$15.00/0 
© 1996 American Chemical Society 
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424 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

a whole range of other conditions need to be fulfilled such as low toxicity, low cost 
and assured availability of raw materials, low energy requirements and high safety of 
the synthesis and processing, environmental acceptability and recyclability. 

A detailed understanding of the molecules and materials on the atomistic level 
greatly facilitates this task. To this end, theoretical and computational approaches 
have become a powerful tool in the research and development process. In order to be 
useful in molecular and materials design, three essential criteria have to be met by any 
theoretical and computational tool: (i) it has to be applicable to fairly large systems 
containing any type of atom in any bonding situation, (ii) its accuracy has to be 
predictable, and (iii), the computational effort has to be reasonable. 

The first requirement comes from the great variety and heterogeneity of modern 
materials. Whi le in the past the molecular and materials sciences were fairly well 
separated disciplines, today the boundary between these two areas is rapidly 
disappearing. For example, in the 1960's, materials science was almost synonymous 
with metallurgy and the prevailing structural materials for mechanical applications 
were steel and other metal alloys, whereas today the importance of synthetic 
polymers, ceramics, and composites as structural engineering materials has reached 
an unprecedented level and continues to grow (1). Functional materials for electrical, 
optical, and magnetic applications have long been the domain of inorganic materials, 
yet molecular systems are rapidly gaining in importance in these areas. For example, 
l iquid crystal displays are replacing cathode ray tubes and organic light emitting 
diodes are promising alternatives to ΙΠ-V or Π-VI semiconductors. A t the same time, 
advances in silicon-based technologies are enabling the creation of microelectronic 
devices with unprecedented miniaturization in feature sizes. 

The requirements of generality, system size, accuracy and computational effort 
are very hard to reconcile and for many decades it seemed nearly impossible to meet 
al l of these simultaneously. The development of density functional theory, its 
expansion from solid state physics into the molecular sciences together with the 
astonishing progress in computer hardware have enabled a major step towards this 
goal (2). However, in view of the tantalizing complexity of real systems and the 
enormous difficulties arising from the vast differences in length and time scales 
between atomistic processes and macroscopic behavior, it is clear that we are far from 
having a complete solution to accomplish the task of molecular and materials design 
through computer simulations. Nevertheless, theoretical and computational tools are 
able to make a significant contribution and their importance is increasing. It is the aim 
of the present contribution to discuss and illustrate the present capabilities of density 
functional methods as a tool in molecular and materials design, to point to current 
limitations, and to indicate development trends. 

Density Funct ional Theory 

With in the scope of this contribution, only the most relevant aspects of density 
functional theory are highlighted. For comprehensive treatments and reviews the 
reader is referred to the literature such as those given in references (3) and (4). 

Density functional theory offers a rigorous framework for the quantum 
mechanical description of any ensemble of atoms such as molecules, molecular 
aggregates, three-dimensional periodic solids, and surfaces containing any atom from 
the periodic table. Perhaps the most important practical problem that can be solved 
with density functional theory is the determination of the changes in the total energy 
of a system as a function of the positions of the atoms. This knowledge of the energy 
hypersurface is fundamental to the understanding of any chemical system. It allows 
the prediction of ground state structures, relative stability of conformations, the 
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28. WIMMER DFT and Molecular and Materials Design 425 

prediction of vibrational spectra and, at least in principle, the determination of 
transition state geometries and barrier heights in any chemical reaction. 

In density functional theory (5,6) the total energy is expressed as a functional of 
the electron density, p , for given positions, of all atomic nuclei. 

£ = E[p(r),R e] (1) 

This functional has a minimum for the ground state electron density. 

dE[p] 
dp 

= 0 (2) 
P=Po 

The total energy is decomposed into three contributions, a kinetic energy, T0, a 
Coulomb energy, U, due to classical electrostatic interactions among al l charged 
particles in the system, and a term called the exchange-correlation energy, E^, that 
captures all many-body interactions. 

Ε = Τ0+ϋ + Ε„ (3) 

This decomposition is formally exact, but only the relationship between the Coulomb 
energy and the total charge distribution can be given directly. For any practical 
purposes, the calculation of the kinetic energy term requires good one-particle wave 
functions (molecular orbitals) and the exchange-correlation term needs to be 
approximated. 

In wave function based quantum chemical methods such as Hartree-Fock theory 
with second order perturbation theory, coupled-cluster methods and configuration 
interaction (CI) methods the high and often prohibitive computational effort comes 
from the specific description of electron correlation. In fact, these methods implicitly 
assume that these many-body effects of the interacting electron system are of a long-
range delocalized nature. The local density approximation ( L D A ) of density 
functional theory and also the more recent generalized gradient approximations 
( G G A ) rest on the assumption that electrons are essentially "nearsighted". It turns out 
that this assumption is justified especially in regions of reasonably high electron 
density as found, for example, in the interior of a solid or a molecule. Therefore, as an 
approximation, the exchange-correlation energy is taken from known results of an 
interacting electron system of constant density ("homogeneous electron gas") and it is 
assumed that the exchange and correlation effects are not strongly dependent on 
inhomogeneities of the electron density away from a reference point, r. Thus, the 
local electron density can be used to evaluated the exchange and correlation effects of 
a volume element around r 

£ x c [p]«Jp(r)e; c [p(r)]Jr (4) 

The exchange-correlation energy per electron, £" c , in a system of interacting 
electrons of constant density is very well known (7). It turns out that the L D A is an 
astonishingly good approximation and many structural properties and relative energy 
changes of a great variety of compounds are very well described. However, it has 
been found for many systems (8-10) that atomization energies are overestimated by 
the L D A . Thus, the calculation of absolute values for binding energies, but also 
dissociation energies and weak interactions such as hydrogen bonds or carbonyl 
bonds require methods beyond the local density approximation. One possibility is 
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426 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

offered by gradient corrections such as those suggested by Becke (11,12), Perdew 
(13) and Lee et al. ( 14). In these approaches, terms depending on the gradient of the 
electron density are included in the expressions for the exchange and correlation 
energy. While these approaches definitely improve the values of binding energies of 
most compounds as well as the bond distances in many weakly bound systems, some 
of these gradient corrections contain parameters which are fitted in a somewhat ad-
hoc manner. This clouds their predictive capabilities. In contrast, the L D A is exactly 
defined and rests only on fundamental physical constants. Thus, D F T - L D A 
calculations have an ab initio character. 

The accuracy of density functional calculations is intimately related to the use 
of one-particle wave functions, ψΐ, which define the total electron density through 

with./ ; , being the occupation of level i. Using this decomposition of the total electron 
density into one-particle densities, the variational properties given by eqs. (1) and (2) 
lead to effective one-particle Schrôdinger equations (6), which are referred to as 
Kohn-Sham equations 

Corresponding to the three terms in the total energy expression (3), namely the kinetic 
energy, the Coulomb energy, and the exchange-correlation energy, the effective one-
particle Hamiltonian of the Kohn-Sham equations contains a kinetic energy operator, 
a Coulomb potential operator, and an exchange-correlation operator. The latter is 
related to the exchange-correlation energy by 

The theory has been generalized to spin-polarized systems (15,16) in which the 
density of the spin-up electrons and that of the spin-down electrons are different, as is 
the case in open-shell molecules and in magnetic systems. In practice this means that 
the Kohn-Sham equations have to be solved for the spin-up and spin-down electrons 
individually, which essentially corresponds to a spin-unrestricted formalism. 

The fundamental quantities of density functional theory are the total electron 
density (and spin density for open-shell molecules and magnetic systems) and the 
corresponding total energy. The one-particle wave functions (i.e. molecular orbitals in 
the case of molecules) and the associated one-particle eigenvalues are, strictly 
speaking, only auxiliary quantities. In practice, however, these one-particle quantities 
are extremely useful in order to explain the frontier orbitals of a molecule, to 
distinguish between metallic and insulating behavior of a solid, and to interpret 
optical excitation energies and photoemission experiments or even subtle effects such 
as the magneto-optic Kerr effect and magnetic anisotropy energies. In fact, for 
metallic and delocalized systems, the eigenvalues actually correspond almost 
quantitatively to excitation energies and the highest occupied level is the negative of 
the ionization energy or work function. In semiconductors, where localization can be 
important, the L D A gap is typically 30-50% too small compared with the 
experimental optical gap. For very localized systems such as /-electrons in rare-earth 
compounds, these one-particle eigenvalues are far from excitation energies. This does 
not mean that in these cases the L D A is inappropriate. It simply means that one has to 

P(r) = X/M(r)f (5) 

(6) 
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go one step further in the theory in order to describe localized excitation phenomena 
which are not metallically screened. 

A t present, there is not a single density functional implementation which would 
be equally applicable and efficient for all systems ranging from molecules to 
magnetic transition metal heterostructures. Therefore, a number of different 
approaches have emerged as discussed, for example, by Wimmer (17). 

Illustrative Examples 

Chemisorption of silane on a Si(001)2xl surface.The first example is related to 
the reaction of molecules with surfaces as they occur, for instance, in chemical vapor 
deposition processes in the fabrication of microelectronic components (18). The 
technologically most important semiconductor surface is probably Si(OOl). This 
surface is known to reconstruct in the form of a (2x1) structure involv ing a 
dimerization of the surface silicon atoms (19). It is not clear i f the bonding of a si lyl 
group to one of the S i dimer atoms and the attachment of the remaining hydrogen 
atom to the other S i dimer atom breaks the dimer bond. If one dimer bond would open 
in this way, how much would the neighboring S i dimer change its geometry? In other 
words, how local is the bonding of a silane molecule on a S i surface? 

In the present study (20), the chemisorption of silane, S1H4, was modeled by a 
finite cluster containing 26 S i atoms as shown in F ig . 1. The bonds towards the bulk 
are saturated with H bonds with a Si-Η distance of 1.496 À, which correpsonds to the 
optimized Si-Η distance in silane obtained on the same level of theory as used in the 
cluster calculations. The electronic structure, total energies and forces were calculated 
by an all-electron local density functional approach with the D M o l program (21,22). 
In this method, the density functional equations are solved with an expansion of the 
one-particle wave functions in a linear combination of numerical atom orbitals. For 
all S i atoms, J-polarization functions were added to the double-numerical basis set 
and found to be important to get correct bond lengths. The Is and 2s core electrons of 
the S i atoms were treated by a frozen core approximation. This results in a total of 
480 valence orbitals. The numerical integration were carried out with a "medium" 
grid (22) corresponding to a total of 109178 integration points. The geometry 
optimization was performed on the local density functional level by using the 
exchange-correlation terms given by Vosko, W i l k , and Nusair (23). In the geometry 
optimization the top-most 11 S i atoms with their hydrogen atoms are relaxed and the 
remaining Si atoms, which would be attached to the bulk atoms, are kept at their bulk 
positions. In the present study the geometry optimization was terminated with a 
maximum gradient of 0.001 Ha/Bohr. Starting from nearly symmetric dimers, the 
geometry optimization leads to an asymmetric arrangement of the dimers as shown on 
the left-hand side of F ig . 1. A dimer bond distance of 2.33 Â is obtained for this 
asymmetric arrangement, which is larger than the previously calculated value of 2.21 
Â for a symmetric arrangement (24) and the experimental value of 2.21 ± 0.04 Â 
obtained from P E X A F S measurements (24). Upon chemisorption of -S1H3 and - H on 
the two atoms of a surface dimer, these atoms move into the same plane parallel to the 
surface ("symmetric" arrangement) thereby restoring the tetrahedral coordination of 
the dimer atoms (cf. F ig . 1). The dimer bond length increases from 2.33 Â to 2.44 Â. 
Interestingly, the geometry of the neighboring asymmetric dimer is slightly reduced 
from 2.33 A to 2.30 Â (cf. right-hand side of F ig . 1). This implies that the interaction 
of a si lyl radical with a reconstructed Si(001)2xl surface is of a fairly local nature in 
the sense that it does not affect significantly the geometry of neighboring dimers. 

The chemisorption energy of a silane molecule on a Si(001)2xl surface is 
calculated by subtracting the total energy of the clean Si(001)2xl surface and that of 
an isolated silane molecule from the total energy of the cluster representing the 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 8

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 5
, 1

99
6 

| d
oi

: 1
0.

10
21

/b
k-

19
96

-0
62

9.
ch

02
8

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



Fi
gu

re
 1

. 
Cl

us
te

r 
m

od
el

 o
f 

th
e 

re
co

ns
tr

uc
te

d 
Si

(0
01

)2
xl

 s
ur

fa
ce

. 
Th

e 
bo

nd
s 

to
w

ar
ds

 t
he

 b
ul

k 
ar

e 
sa

tu
ra

te
d 

wi
th

 H
 a

to
m

s. 
Th

e 
cl

us
te

r 
sh

ow
n 

on
 t

he
 le

ft
-h

an
d 

si
de

 r
ep

re
se

nt
s 

th
e 

cl
ea

n,
 r

ec
on

st
ru

ct
ed

 s
ur

fa
ce

. 
Th

e 
ch

em
is

or
be

d 
sy

st
em

 i
s 

di
sp

la
ye

d 
on

 t
he

 r
ig

ht
-h

an
d s

id
e,

 w
he

re
 a

 s
ily

l g
ro

up
 i

s 
at

ta
ch

ed
 to

 o
ne

 a
to

m
 o

f 
a 

su
rf

ac
e 

di
m

er
 a

nd
 t

he
 r

em
ai

ni
ng

 H
 a

to
m

 f
ro

m
 t

he
 s

ila
ne

 m
ol

ec
ul

e 
is

 b
on

de
d 

to
 

th
e 

ot
he

r 
di

m
er

 a
to

m
. 

D
ow

nl
oa

de
d 

by
 N

O
R

T
H

 C
A

R
O

L
IN

A
 S

T
A

T
E

 U
N

IV
 o

n 
O

ct
ob

er
 8

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 5
, 1

99
6 

| d
oi

: 1
0.

10
21

/b
k-

19
96

-0
62

9.
ch

02
8

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



28. WIMMER DFT and Molecular and Materials Design 429 

chemisorbed system as shown in F i g . 1. To this end, the geometry of a cluster 
representing the clean surface and that of an isolated silane molecule were optimized 
at the same level of theory. It is known that the local density approximation leads to 
good geometries, but tends to overestimate dissociation energies. Therefore, the total 
energies of all three systems, i.e. the clean cluster, the isolated silane molecule, and 
the chemisorbed system are recalculated by using a gradient-corrected form for the 
exchange-correlation potential as given by Becke (12) for the exchange and Lee, 
Yang, and Parr ( 14) for the correlation energies. The dissociative binding energy (at 
T=0) of a silane molecule on a reconstructed Si(001) surface is thus calculated to be 
2.38 e V on the L D A level and 1.86 eV by using the B - L Y P gradient corrections. 

Binding of ammonia to a CuO( l l l ) surface. In the design of protective coatings 
of copper surfaces it is critical to have a clear understanding of the interactions of 

various molecular functional groups with the metal surface. In the case of copper, one 
design strategy could start from the idea to exploit the C u - N bonding. In fact, the 
[Cu( N H 3 ) 4 ] 2 + complex is known to be quite stable and it is not unreasonable to 
assume that there is also a significant bonding between N H 3 and the atoms on a 
copper surface. A t ambient conditions, copper surfaces are likely to be covered by an 
oxide f i lm which could be a Cu(I) or a Cu(II) oxide. Here we consider the case of the 
Cu(II) oxide. Inspection of the C u O crystal, which crystallizes in space group C2/c , 
reveals that the (111) surface might be a low-energy surface because it is fairly dense 
and contains both cations and anions (cf. F ig . 2). In the present calculations, The 
C u O ( l 11) is modeled by a Q114O14 cluster as shown in Fig . 2. A n ammonia molecule 
is placed on top of this cluster and an energy minimization is carried out using the 
D M o l approach as described earlier. In this case, a double-numerical basis has been 
employed and a "medium" grid is used for the numerical integrations of the matrix 
elements (22). From Fig . 2 it can be seen that the ammonia molecule is bonded on top 
of a copper atom, as one might expect. The molecule is slightly tilted, indicating an 
attractive interaction between one of the hydrogen atoms of the ammonia molecule 
and an oxygen atom of the surface. For comparison, the geometry and binding 
energies are calculated for an isolated [ C u ( N H 3 ) 4 p + complex using the same level of 
theory. In the tetrammine complex, the calculated C u - N distance is found to be 2.03 
Â, compared with a distance of 2.19 À in the case of the C u O surface. Surprisingly, 
the bonding energy per C u - N bond in the tetrammine complex is about one order of 
magnitude larger than the C u - N interaction of the ammonia molecule on the 
C u O ( l l l ) surface. This means that the initial guideline for the design of adhesive 
molecules may not be justified since there is a surprisingly large difference of the 
behavior of C u ions in a free complex and on a CuO surface. 

Structure of LaNis. In the third example, the capabilities of density functional 
theory are illustrated for the calculation of structural properties of solids. One of the 
problems in the design of metal-hydride batteries is the expansion of materials such as 
LaNi5upon loading with hydrogen. It would be desirable to find alloys which 
maintain the electrochemical properties and hydrogen storage capabilities, yet show a 
smaller mechanical expansion and contraction within each battery cycle. A s a first 
step it is necessary to demonstrate that reliable structural information can be obtained 
for the pure alloys. 

Figure 3 shows the crystal structure of LaNis which consists of a hexagonal 
lattice of the L a atoms with the N i atoms forming an intriguing pattern of N14 units. 
The dense structure and metallic nature of LaNis requires a band structure approach 
(25). Furthermore, inclusion of relativistic effects are required for the adequate 
description of L a . To this end, the augmented spherical wave method (26) with the 
atomic-sphere-approximation (ASA) as implemented in the E S O C S program (27) was 
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430 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Figure 2. Section of the C u O ( l 11) surface. The atoms displayed in darker shades 
are used for the quantum mechanical cluster calculations. The ammonia molecule 
is shown in its equilibrium position as obtained from a geometry optimization 
using the D M o l program. 
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chosen. In this approach, the local density functional problem is solved by expanding 
the wave functions in a variational basis set which is constructed from atomic-like 
functions inside the atomic spheres which are matched to scattering functions. 
Relativistic effects are taken into account in the form of a semi-relativistic approach 
given by Koell ing and Harmon (28). A major feature of the A S A approach is the use 
of a shape approximation to the effective potential in the form of spherically 
symmetric potentials around each atom. This implies that only isotropic volume 
changes can be studied, whereas anisotropic deformations would require a f u l l -
potential approach such as the full-potential linearized augmented plane wave 
( F L A P W ) method (29) or the full potential linearized muffin-tin orbital ( F P - L M T O ) 
approach (30). However, these approaches would be computationally significantly 
more demanding than E S O C S . 

On the right-hand side of F ig . 3 the pressure due to the electronic degrees of 
freedom of the system are shown as a function of the volume. It can be seen that 
vanishing pressure, i.e. equilibrium conditions are found for a volume of the unit cell 
which is within 2% of the experimental results (31). The derivative of the pressure 
with respect to volume changes, shown in the lower panel on the right hand side of 
F ig . 3, is proportional to the bulk modulus. These preliminary results demonstrate the 
capabilities of this first-principles approach to predict structural and energetic 
properties of fairly complex intermetallic phases. 

Summary and Conclusions 

Density functional theory has become a practical and useful tool for molecular and 
materials design. Its major strengths are (i) fairly large molecules and unit cells of 
about 100 atoms containing any element of the periodic table and more are accessible 
by this first-principles approach (ii) the method is quite accurate: it gives equilibrium 
bond distances to within about 0.05 Â and bond angles to within about \-2°(8-10). 
Binding energies are overestimated by the local density approximation ( L D A ) , but 
can be brought to within about 5 kcal /mol or better of experiment by using 
generalized gradient corrections, (iii) compared with Hartree-Fock calculations and 
correlated wave function ab initio methods, density functional calculations are 
computationally significantly more efficient. 

These capabilities have been illustrated by the example of a silane molecule 
chemisorbed onto a reconstructed Si(001) surface using the D M o l approach, i.e. 
numerical atomic orbitals as variational basis and a numerical integration to evaluate 
the Hamiltonian matrix elements, and a projection method of the charge density to 
solve Poisson's equation within the self-consistence cycles. The cluster calculations 
reveal that the dissociative chemisorption of a silane molecule on a reconstructed 
Si(001) increases the bond length of the affected surface dimer by about 0.1 Â while 
the dimer bond-length at the neighboring Si-dimer is not significantly altered. This 
indicates that the chemical interaction of the silyl radical with a silicon surface is of a 
local nature. This justifies, a posteriori, the use of a cluster model to describe the 
interactions of molecules with semiconductor surfaces. However, the cluster used in 
this study is sti l l relatively small and more calculations w i l l be necessary to 
investigate the convergence of the results with the cluster size. Given the capability of 
density functional theory (especially with the gradient corrections included) to predict 
fairly accurate binding energies, density functional theory could prove to be a 
valuable tool for the prediction of thermochemical data of molecule/surface 
interactions, thus enriching the experimental data base of this important class of 
chemical systems. 
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The case of an ammonia molecule adsorbed on a C u O ( l 11) surface is another 
example of the use of density functional theory for obtaining data on binding 
energies, which then can be used in molecular design strategies. The present 
preliminary study indicates that the C u - N bonding strength in a free tetrammine 
complex might be about one order of magnitude larger than in the case of an 
ammonia molecule adsorbed on top of a C u atom on the C u O ( l l l ) surface. This 
surprisingly large difference has significant implications for the strategy of designing 
molecules that bind well to this oxide surface. 

The third example demonstrates the use of density functional theory in a very 
different chemical environment, namely the LaNis crystal. In this case, the chemical 
bonding between the L a and N i atoms involves localized J-electrons as wel l as 
itinerant s and p electrons which contribute to the metallic bonding in this system. 
While it is computationally more efficient to use a band structure method such as the 
augmented spherical wave (ASW) approach, one should keep in mind that the basic 
theory is the same as for the calculations on molecules and clusters. This universality 
is a remarkable feature of density functional theory. 

Given the trend in materials science towards more complex materials involving 
combinations of organic and inorganic aspects, for example in organometallic 
compounds or in heterogeneous catalysis, density functional theory takes a unique 
place as a unified and universal tool. As stated earlier, the prediction of ground state 
geometries is perhaps one of the strongest practical aspects of density functional 
theory. Furthermore, the theory can also treat open-shell systems, for example 
radicals such as diphenyl-picryl-hydrazyl (2) as well as magnetic systems such as 
magnetic multilayer structures and systems with reduced dimensionality (32). In fact, 
in the area of magnetism density functional theory is making already a major 
contribution in the industrial design and development of magnetic materials for 
applications such as magneto-optic recording and magnetic reading heads. 

Despite these successes, there are still a number of limitations and challenges, 
which are related to accuracy and computational speed. In contrast to wave function 
based ab initio methods, there is no systematic way to improve the accuracy beyond 
the local density approximation. The generalized gradient corrections are a step 
forward, but it seems that the current generation of these methods is reaching some 
fundamental limitations and a qualitative step forward is called for (33). The 
fundamental problem seems to be the "short-sightedness" underlying the local density 
approximation and any gradient expansion. In many cases, especially in solids, this 
approximation works surprisingly we l l . However , in situations of weak 
intermolecular interactions such as dative bonds in carbonyls, in the hydrogen bond, 
but also in the transition state of a chemical reactions, the low density of electrons in 
critical regions of the system leads to long-range interactions (derealization of the 
exchange hole) which wi l l have to be included in order to improve the accuracy. 

Given the fact that a large majority of quantum chemists have only recently 
started to use density functional theory, the progress in the theory can be expected to 
accelerate. From the increasing body of density functional results for molecules and 
solids, which is made possible by the wider availability of density functional 
computer codes and powerful computer hardware, it can be expected that density 
functional methods w i l l become an indispensable tool for molecular and materials 
design, hopefully helping to solve the many challenging technological problems of 
our industrialized societies. 

Acknowledgments. The author thanks his colleague Catalina Guerra for her help and 
Prof. Jiirgen Kiibler for the discussions of the LaNis system. A l l calculations reported 
here were carried out on I B M RS/6000 workstations. 
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Chapter 29 

Density-Functional Theory Studies 
on Beryllium Metal Fragments of 81, 87, 

and 93 Atoms 

Richard B. Ross1, C. William Kern2, Shaoping Tang3,4, 
and Arthur J. Freeman3 

1PPG Industries, P.O. Box 9, Allison Park, PA 15101 
2Department of Chemistry and 3Department of Physics and Astronomy, 

Northwestern University, Evanston, IL 60208 

Density functional molecular orbital theory has been applied to fragments of bulk 
beryllium consisting of 81, 87, and 93 atoms. Mulliken net charges for all atoms 
are found to be close to the bulk value of zero. ΔSCF ionization potentials are 
found to be 1.7 to 1.9 eV larger than the bulk workfunction (3.92 eV). Valence 
electron density plots provide greater detail than electron density plots from 
previous Hartree-Fock-Roothan studies. Valence electron deformation plots 
indicate increased electron density along the principal axis of symmetry (z) 
(perpendicular to the xy basal plane) in comparison to the x and y axial directions. 
In addition to comparisons with experimental bulk properties, the results are 
compared to previous Hartree-Fock-Roothan studies and density functional models 
of other beryllium clusters. It is possible to conclude that the calculated binding 
energies converge to near the bulk experimental value at ~70-80 atoms. The 
accuracy of the current model to determining binding energies and atomic 
populations for fragments of bulk beryllium as small as 81 atoms provides 
additional evidence that density functional methods are a useful tool to characterize 
the electronic structure of bulk metal systems. 

The structure and dynamics of metal clusters are being characterized in increasing 
detail with the advent of modern instrumentation and sophisticated spectroscopic 
techniques. The experimental studies are providing increased understanding into 
the nature of intermetallic binding in clusters. For theoretical studies on clusters 
composed of more than a few atoms, two possible approaches to characterize the 
many-body interactions within the clusters are the Hartree-Fock-Roothan (HFR) 
and density functional theories (DFT). The methodologies reduce the N7 

dependence of highly correlated N-orbital schemes to a more tractable dependence 
of N3-N4. The Hartree-Fock-Roothan method leads to the best single determinant 

4Current address: Materials Science Laboratory, Texas Instruments, Inc., Mail Stop 147, 
Dallas, T X 75243 

0097-6156/96/0629-0435$15.00/0 
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29. ROSS ET AL. DFT Studies on Beryllium Metal Fragments 437 

uncorrelated wave function while the density functional theory method replaces 
the full Hamiltonian with an approximate correlated potential. 

Previously, HFR studies have been carried out by Ross, Kern, Ermler, 
Pitzer and coworkers on clusters of 13 (7), 19 (2), 21 (2), 33 (2), 39 (2), 51 (3), 57 
(3), 69 (4), 81 (5), 87 (5), 93 (6), 105 (d), 111 (6), 123 (6), and 135 (7)beryllium 
atoms. In these studies, evidence is presented for the convergence of bulk 
properties such as binding energy and net charges with cluster size. In addition, 
the size of the cluster required for convergence has been seen to depend on the 
property of interest. 

A HFR study has also been carried out by Pettersson and Bauschlicher on a 
cluster of 55 beryllium atoms (8). A Hartree-Fock band structure calculation (9), 
density functional band theory studies (10,11), and orthogonalized plane wave 
studies (72,13) have also been performed in an examination of the electronic 
properties of bulk beryllium. 

Recently, a density functional molecular orbital theory study has been 
performed by Tang and coworkers on a cluster of 135 beryllium atoms (14). In the 
present paper, density functional theory studies are reported for clusters of 81, 87, 
and 93 beryllium atoms. Calculated binding energies, ionization potentials, net 
charges, and electron densities are given and compared to previous work and 
experimental data where available. 

Calculations 

Three dimensional views of the metal fragments can be seen in Figure 1. The 
atoms occupy the positions as they would in the bulk hep beryllium lattice. As 
discussed in detail previously (2), the fragments are derived by adding sets of 
atoms as they are found on successive coordination spheres about a central 
beryllium atom. 

The calculations employ the local density functional approach (LDA) for 
molecules as implemented (75a) in the program DMol. The exchange and 
correlation potential employed is the explicit form of V * ^ given by Hedin and 
coworkers (16). A detailed discussion of the formalism of the method has been 
presented previously by Delley (15b). 

The basis functions in DMOL are generated numerically from the local 
density functional solutions for free atoms and for positively charged atoms. Five 
basis functions are used for beryllium which contain neutral Be-2s, Be+2-2s, and 
hydrogenic C-2p orbitals. The C-2p orbitals are used as polarization functions. 

Ground state neutral self-consistent field (SCF) studies have been carried 
out for all fragments. SCF studies have also been performed on the +1 ion. ASCF 
ionization potentials have been computed then as the difference of converged 
neutral and first ionized states. 

The studies for the closed shell neutral and first ionized states have been 
carried out in spin-restricted and spin-unrestricted manners, respectively. The 
degree of convergence of the self-consistent iterations, measured by root mean 
square (rms) changes in the charge density, is set at 10"6 which allows the total 
energy to converge to 10"6 Ry. 

D
ow

nl
oa

de
d 

by
 U

N
IV

 M
A

SS
A

C
H

U
SE

T
T

S 
A

M
H

E
R

ST
 o

n 
O

ct
ob

er
 1

0,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 5

, 1
99

6 
| d

oi
: 1

0.
10

21
/b

k-
19

96
-0

62
9.

ch
02

9

In Chemical Applications of Density-Functional Theory; Laird, B., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1996. 



4 3 8 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

The ground state neutral calculations on Be8i, Be 8 7, and Be^ have been 
carried out on a Cray Y-MP supercomputer requiring 66, 85, and 64 minutes of 
CPU time, respectively. The +1 ion SCF studies have been carried out on a Silicon 
Graphics R8000 workstation and required 351, 820, and 681 minutes for the same 
respective atom clusters. 

Discussion for Selected Properties 

Binding Energy. Calculated binding energies for the fragments are shown in 
Table I and plotted in Figure 2. Also shown for comparison are binding energies 
calculated from LDA studies on a fragment of 135 atoms (14) as well as on a series 
of smaller fragments (77). The experimental binding energy (18) and binding 
energies calculated for a series of HFR clusters (7-7) are also included for 
comparison. 

Table L Calculated Binding Energies (kcai/mon for Beryllium Ousters 

Fragment DFT* HFR b 

Bel3 50.6 12.0 
Bel9 59.8 17.2 
Be21 59.4 17.9 
Be33 59.4 16.5 
Be39 65.0 21.7 
Be51 70.1 25.8 
Be57 70.8 25.4 
Be69 73.0 28.2 
Be81 73.2 28.3 
Be87 73.4 28.5 
Be93 73.2 28.0 

Bel05 - 29.9 
B e l l i - 30.5 
Bel23 - 29.6 
Bel35 77.5 31.7 

Bulk Exp c 75.3 

*DFT studies for clusters of 13 to 69 from Ref. 17. Binding energy for Be^s from 
Ref. 14. 
bHFR binding energies from Ref 1-7. 

'Tlef. 18. 
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29. ROSS ET A L DFT Studies on Beryllium Metal Fragments 439 

As can be seen in the figure and table, the DFT binding energies converge 
to near the bulk value of 75.3 kcal/mol at -70-80 atoms. Specifically, the binding 
energies for 69, 81, 87, and 93 atom fragments are found to be 73.0, 73.2, 73.4, 
and 73.2 kcal/mol, respectively. As the cluster size is increased to 135 atoms, the 
binding energy is overestimated slightly (77.5 kcal/mol) compared to the 
experimental value (75.3 kcal/mol (18)). It should be noted, however, that the 
binding energy will likely increase somewhat more i f d-polarization functions are 
included in the basis set. 

As can also be seen in Figure 2, the HFR binding energies begin to 
converge with cluster size at a point similar to the DFT results (-70-80 atoms). 
However, the calculated values of the binding energies are 28-32 kcal/mol for the 
largest clusters which is well below the bulk value of 75.3 (18). The 
underestimation of binding energy for the HFR clusters is likely due in largest part 
to the omission of electron correlation effects which are approximated in the DFT 
methodology through the exchange-correlation potential. 

As can also be seen in Figure 2, the trends for increasing binding energy 
with cluster size for both the DFT and HFR methodologies are similar. For 
example, there is an increase between 13 and 19 atoms followed by a leveling off 
to 33 atoms. The binding energy then increases between 33 and 51 atoms. The 
binding energy then increases sharply to 57 atoms followed by a more gradual 
increase to 135 atoms in both cases. The similarity of trends between the two 
methodologies also increases confidence that the lowest states have been found in 
the HFR clusters which require a search amongst low-lying electron configurations. 

An estimate of the contribution of electron correlation to the binding 
energy can be obtained by subtracting the Ben HFR and DFT binding energies 
which yields a difference of 38.6 kcal/mol. Calculation of this difference for 
clusters from 19 through 135 atoms produces a rather narrow range of values from 
42.6 to 45.8 kcal/mol which are only about 15% greater than the Ben difference. 
Adding the Bei 9 difference of 42.6 kcal/mol to the HFR Bens binding energy yields 
a binding energy of 74.3 kcal/mol which is to within 1 kcal/mol of the bulk binding 
energy (18). This analysis suggests that well over 95% of the electron correlation 
contribution to the binding energy of bulk beryllium metal is localized in the Be^ 
cluster. 

Ionization Potential. Calculated ASCF ionization potentials from the studies are 
shown in Table I I . As with binding energies, calculated values from previous HFR 
studies (7-7) and a DFT study on Bei35 (14) are included for comparison. In this 
case, for lack of any other measurements, the calculated ionization potentials are 
compared to the experimental workfunction of the bulk metal (3.92 eV) (79). As 
can be seen from the calculated values in the table, the DFT ASCF ionization 
potentials range from 1.7 to 1.9 eV greater than the experimental workfunction. In 
contrast, the HFR ASCF ionization potentials agree to within 0.4 eV. 

Atomic Charge. Net atomic charges calculated from Mulliken population 
analyses (20) are summarized in Table HI. They are also shown in Figure 3 as a 
function of radius R for successive coordination shells of the symmetry-distinct 
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440 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

0 20 40 60 80 100 120 140 
N u m b e r of A t o m s 

Figure 2. Calculated binding energies (kcal/mol) as a function of cluster size. 
Previously calculated HFR values (1-7) are included for comparison as are values 
from experiment (18) and DFT studies on a series of smaller clusters (7 7) and on 
Bem (14). 

groups of atoms. Positive numbers represent a gain of charge and negative 
numbers a loss of charge. 

As can be seen in the table and figure, calculated net charges for the central 
atom, BeO, are -0.038, -0.009, and +0.007 e for the 81, 87, and 93 atom clusters, 
respectively. These values are close to the bulk beryllium metal value of zero. 
The net charges for the remaining symmetry groups of atoms oscillate around the 
zero line with similar but not completely identical patterns. The absolute values of 
net charge range from 0.002 to 0.14 e indicating again the approximately neutral 
character of the atoms in the fragments. Lack of atomic relaxation may be partially 
responsible for the charges not being calculated to be exactly 0.0 e. 

Similar observations have been seen for net atomic charges in a DFT study 
by Tang et al. on Be^s (14). The net charge on the central beryllium atom was 
found to be 0.03 electrons. The net charges for the other symmetry-distinct groups 
of atoms also oscillate around the zero line without showing a clear trend. The 
absolute value of net charges are found to be small and range from 0.0-0.08 e. The 
similarity of the net charges for the 81, 87, 93, and 135 atom clusters indicates that 
they are either independent of cluster-size or converge to bulk limits in the DFT 
methodology at clusters of 81 atoms or less. 

In contrast, HFR net charges calculated previously (5,6) for 81, 87, and 93 
atom fragments range in absolute value from 0.02-1.0, 0.01-1.19, and 0.02-1.12 e, 
respectively. The charges on the central atom for the lowest states in the 81, 87, 
and 93 atom clusters were found to be 0.17, 0.18, and -0.06 e, respectively. The 
HFR average net charge for the central atom for the lowest states of 105 (6), 111 
(d), 123 (d), and 135 (7) atom clusters have been found to be -0.09, -0.06, -0.06, 
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Table Π. ASCF Ionization Potentials (eV) from the DFT studies and Lowest 
States of HFR Studies 

Δ SCF Ionization Potential (eV) 
Fragment DFT HFR a 

Bel3 - 4.85 
Be81 5.90 4.28 
Be87 5.70 3.78 
Be93 5.81 4.20 
Bel 05 - 4.31 
B e l l i - 4.48 
Bel23 - 4.03 
Bel35 5.85b 4.29 

aHFR ionization potentials from Réf. 1 (Bei3), Ref. 5 (Be8i, Be 8 7), Ref. 6 (Ββ93 

through Bem), and Ref. 7 (Be^s). 
W . 14. 

and 0.02 e. The net charge on the central atom trends towards the bulk value of 
zero with increasing cluster size and hence is cluster-size dependent in the HFR 
methodology. This is in contrast to the DFT studies for which all net charges are 
close to zero for 81, 87, 93, and 135 atom clusters. This suggests that the DFT 
valence electron density is distributed more evenly over the atom cores compared 
to the HFR density which omits electron correlation. 

Charge Density. Contour plots of the valence and deformation charge densities 
for the 81, 87, and 93 atom clusters are shown in Figures 4, 5, and 6 for the XY, 
XZ, and YZ planes, respectively. The deformation charge density is computed by 
subtracting the sum of atomic charges from the total charge for each respective 
cluster so that the charge redistributions resulting from DFT binding are seen more 
clearly. The dark and light lines represent charge gained or lost, respectively. 

In the XY plane (Figure 4), there are two distinct triangular charge 
environments. The distinct environments are due to the presence of atoms in 
planes above and below one of the triangular regions. Examination of both the 
valence and deformation charge distributions for all three clusters display this 
characteristic pattern. The two different types of triangular regions alternate in six 
triangular segments around the central atom. In all three clusters, one region 
consists of a circular contour. In Be 8i, the second region consists of 2 contours 
which are beginning to form a distorted hexagon shape. In Be87 and Be93, in the 
second region the three contours have transformed even more to a distorted 
hexagon. Examination of additional atoms in the next shell around the central 
atom also shows two different triangular regions of similar shapes. The increased 
electron density in the hexagon region, in comparison to the circular region, is 
indicative of the presence of atoms in planes above and below this region. 
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I M M I I I 1 M I I 
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Figure 3. Net atomic charges (e) for the symmetry-distinct groups of atoms as ι 
function of radius of the coordination shells for Be 8i, Beg7, and Be** Points at 
identical radii arise to groups of atoms that are in the same coordination shell 
but nonequivalent from the symmetry point of view. 
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The presence o f two distinct types of triangular charge regions around 
atoms in the X Y plane is seen also in the D F T study (14) on a cluster of 135 
beryllium atoms, thereby indicating that the onset of convergence of the charge 
distribution in the X Y plane begins at 80-90 atoms. 

A comparison o f H F R charge densities for 81 (5), 87 (5), 93 (6), 105 (6), 
111 (6*), 123 (6), and 135 (7) atom clusters in the X Y plane indicates again charge 
density convergence around the central beryllium atom starting at 80-90 atoms (or 
smaller). However in comparison to the D F T valence electron densities, a primary 
difference lies in the more homogenous nature of the charge distribution in the 
H F R cases. The increased sensitivity o f the D F T density to nearby atoms results in 
sharper contours. In the H F R model, the lack of electron correlation tends to 
homogenize the valence electron density. 

The H F R charge densities in the X Y plane do not show any differences in 
the two triangular regions. The H F R charge densities were plotted at different 
contour levels than those in the current D F T studies. However, H F R B e i 3 5 charge 
densities (14) at the same contour levels as the current D F T studies also show a 
homogeneous charge density and no indications that two distinct triangular regions 
are present. 

Examination of the valence and deformation charge densities in the X Z and 
Y Z planes (Figures 5 and 6) indicates anisotropy in the charge distribution which is 
indicative o f p orbital participation in bonding. Anisotropy is seen also in D F T 
studies on B e î 3 5 in the Y Z plane and in X Z and Y Z planes in H F R clusters of 81 
(5), 87 (5), 93 (5), 105 (6), 111 (6), 123 (6), and 135 (7) atoms. The p orbital 
contribution to bonding agrees with a local density approximation ( L D A ) 
pseudopotential study (77) and an X-ray diffraction pattern (27) which exhibits sp 3 

type bonding in beryllium metal. 
In comparing the X Z valence charge densities (Figure 5) for the 81, 87, and 

93 atom clusters, two recurrent "ribbons" of valence charge density are seen 
extending from the -Z to + Ζ direction. The charge density in these regions can be 
traced to the presence of atoms above and below the plane. The valence charge 
densities show this structural feature through the presence of circular contours 
within the ribbons. 

The X Z deformation charge densities (Figure 5) indicate that charge density 
is decreased in the ribbon regions in comparison to a set o f overlapping isolated 
atoms. The deformation charge density plots also show that more charge 
accumulates between atoms along the Ζ direction than in the X direction. This 
implies that the bonding along the Ζ direction may be stronger than in the X 
direction. 

It can be seen also that the electron density changes around the central 
beryllium atom in the X Z plane as the cluster size increases. This suggests that the 
X Z charge density around the central atom has not converged in contrast to the 
X Y plane density. 

Analysis o f the Y Z plane valence charge density (Figure 6) shows variations 
around the central beryllium atom as well. The contours along the Y axis consist 
o f distorted rectangles lying between the central atom and next nearest neighbors 
for the 81 and 87 atom fragments while for Ββ9 3 the first contours along the Y axis 
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are further from the central atom and surround the next nearest neighbors. In the Ζ 
direction, the nearest contours to the central atom are distorted circular contours 
above and below the + Ζ and - Ζ directions for B e 8 i , triangular contours along the 
+ Ζ and - Ζ axes for Be 8 7, and for Ββ93, a pattern similar to B e 8 i . 

The Y Z plane deformation charge densities (Figures 6) show differences in 
the central Be charge environment as the cluster increases from 81 to 93 atoms. In 
addition, as in the X Z plane, more charge accumulates between atoms along the Ζ 
direction than in the Y direction which implies that the bonding along the Ζ 
direction may be stronger than in the Y direction. In fact, all four clusters (81, 87, 
93, and 135 (14)) consistently show more charge accumulation along the Ζ axis 
than along the Y axis. 

The differences observed in the X Z or Y Z plane charge densities for all 
clusters is clearly not the case for the X Y plane densities. Thus, charge densities in 
different planes may converge to bulk limits at different cluster sizes. Since bulk 
beryllium is not symmetrically equivalent in all directions, atoms are not added 
equivalently in all directions. The increased rate of convergence of the X Y basal 
plane density may be enhanced since it is a reflection plane. Consequently, the 
atoms and electron density in this plane effectively see the bulk develop twice as 
fast in comparison to the case without a symmetry plane. 

Conclusions 

Density functional theory (DFT) calculations have been carried out on metal 
fragments of 81, 87, and 93 beryllium atoms. Calculated net charges for all atoms 
are nearly zero as in bulk beryllium. This is in sharp contrast to previous H F R 
studies in which net charge varies over a range of up to 1.12 e for clusters o f 
similar size. In addition, the average net charge in the H F R model is cluster-size 
dependent, converging to the bulk limit around the central beryllium atom at a 
cluster o f 135 atoms. 

Calculated binding energies (73.2, 73.4, and 73.2 kcal/mol for the 81, 87, 
and 93 atom clusters) are found to be close to the bulk value o f 75.3 kcal/mol (18). 
Comparable Hartree-Fock-Roothan studies underestimate the binding energy by 
28-32 kcal/mol. This error is likely due in large part to the exclusion o f electron 
correlation. 

Plots o f D F T valence electron charge densities exhibit sharper contours 
than corresponding Hartree-Fock-Roothan densities. Additional detail seen in the 
D F T model arises from atoms in planes above and below the basal plane. The 
electron density converges in the X Y plane at 80-90 atoms unlike the X Z and Y Z 
planes. Thus, electron densities can converge at different rates in different planes. 

The accuracy of the current model to determining binding energies and 
atomic populations for fragments of bulk beryllium as small as 81 atoms provides 
additional evidence that density functional methods are a useful tool to characterize 
the electronic structure of bulk metal systems. 
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Chapter 30 

Local and Gradient-Corrected 
Density Functionals 

John P. Perdew, Kieron Burke1, and Matthias Ernzerhof 

Department of Physics and Quantum Theory Group, Tulane University, 
New Orleans, LA 70118 

The generalized gradient approximation (GGA) corrects many of 
the shortcomings of the local spin-density (LSD) approximation. 
The accuracy of GGA for ground-state properties of molecules is 
comparable to or better than the accuracy of conventional quan
tum chemical methods such as second-order Møller-Plesset pertur
bation theory. By studying various decompositions of the exchange
-correlation energy EXC, we show that the real-space decomposition 
of EXC facilitates the most detailed understanding of how the lo
cal spin-density approximation and the Perdew-Wang 1991 GGA 
work. The real-space decomposition shows that the near universal
ity of the on-top value for the exchange-correlation hole connects the 
homogeneous electron gas to inhomogeneous systems such as atoms 
and molecules. The coupling-constant decomposition shows that the 
exchange-correlation energy at full coupling strength EXC,λ=1 is ap
proximated more accurately by local and semi-local functionals than 
is the coupling-constant average EXC. We use this insight both to 
critique popular hybrid functionals and to extract accurate energies 
from exact electron densities by using functionals for the exchange
-correlation energy at full coupling strength. Finally, we show how 
a reinterpreted spin density functional theory can be applied to sys
tems with static correlation. 

Density functionals in quantum chemistry 
The main goal of quantum chemistry is the reliable prediction of molecular proper
ties [1]. The development of generalized gradient approximations ( G G A ' s ) [2-10] 
has made density functional theory [11-13] a serious competitor to conventional 
quantum chemistry methods for ground-state properties. The latter methods 
include Configuration Interaction techniques, Coupled-Cluster methods, and the 

1Address after July 1,1996: Department of Chemistry, Rutgers University, 
Camden, NJ 08102 

0097-6156/96/0629-0453$15.00/0 
© 1996 American Chemical Society 
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454 CHEMICAL APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

M0ller-Plesset perturbation expansion [14]. They account for electron correlation, 
but suffer in general from basis set problems. These basis set problems are much 
less severe in current density functional methods, since (as we show below) the 
pair density is not expanded in a basis of one-particle functions. 

The accuracy of the G G A is usually comparable to conventional quantum 
chemistry methods, at much lower computational cost. G G A ' s offer significant 
improvements in the calculation of molecular properties compared to their an
cestor, the local spin-density (LSD) approximation [15]. The local spin-density 
approximation has not been popular amongst chemists, mainly because of its 
tendency to overestimate the binding energy of molecules. 

In practical electronic structure calculations based on density functional the
ory [12], a set of independent-particle equations (the Kohn-Sham equations [15]) 
is solved. These equations require as input an approximation to the exchange-
correlation energy Exc as a functional of the electron density. The G G A approx
imations to Exc depend on both the local spin-density ησ(τ) and the gradient 
of the local spin-density. Among the popular G G A ' s , the Perdew-Wang (PW91) 
[7-10] functional allows the most detailed understanding of how G G A ' s work and 
why they work, since this approximation contains no empirical parameter and is 
constructed from first principles. Results of calculations with this form [9] show 
that it typically reduces exchange energy errors from 10% in L S D to 1%, and 
correlation energy errors from 100% to about 10%. ΡW91 corrects the L S D over
estimate of atomization energies for molecules and solids in almost al l cases, it 
enlarges equil ibrium bond lengths and lattice spacings, usually correctly, and re
duces vibrational frequencies, again usually correctly [10]. P W 9 1 also generally 
improves activation barriers [16]. For recent results with P W 9 1 , see Refs. [17-27]. 

As indicated above, the exchange-correlation energy Exc as a functional of 
the electron density is the crucial quantity in Kohn-Sham calculations. In this 
article we discuss various decompositions of the exchange-correlation energy, and 
we show which of these decompositions is accurately approximated by L S D and by 
the P W 9 1 approximation. This analysis makes it possible to understand how and 
why local and semilocal functionals work even for highly inhomogeneous electron 
systems, such as atoms and molecules. 

Decompositions of E x c 

The basic formula which serves as the starting point for various decompositions 
of Exc is [11-13] 

Exc = y o d\ du 2πυ, J J d3r n(r) n x c , A ( r , r + u). (1) 

The exchange-correlation hole η Χ Ο ) λ(Γ , r -f u) at coupling strength A is given in 
terms of the pair density Ρ\(τσ, (r + ιι)σ ' ) by 

n(r) [n(r + u) + n x c , A ( r , r + u)] = £ Ρ λ ( Γ σ , (r + ιι)σ'). 
σ,σ' 

(2) 
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σ and σ ' are the spin variables of the electrons. Ρ\(γσ,γ'σ') (where r ' = r + u) 
gives the probability density to find an electron with spin σ at r and an electron 
with spin σ' at r ' . The pair density is related to the many-electron wave function 
Φ Λ ( Γ , σ , Γ / , σ / , . . . , Γ Ν , σ Λ τ ) by 

Ρχ(τσ, r V ) = N(N-l) £ /d3r3 ... / d3 

χ Φ Λ ( Γ , σ , Γ / , σ , , . . . , Γ Λ Γ , σ Λ Γ ) · (3) 

ΦΑ is the ground-state wave function of a system in which the electron-electron 
repulsion operator is multipl ied by λ and the external potential is varied with λ 
so that the electron density is equal to the physical ground-state density for all 
values of λ. ΨΑ=Ι is the interacting wavefunction found by traditional correlated 
methods, while ΨΑ=Ο is the exact exchange wavefunction (which is similar to that 
of Hartree-Fock [28]). Eqs. 1 and 2 suggest a number of possibilities to decompose 
^occ by simply permuting the sequence of integrations and summations. The 
decomposed approximate exchange-correlation energy can then be compared with 
the corresponding exact quantity. 

E n e r g y - d e n s i t y d e c o m p o s i t i o n o f E X C , A - We examine the integrand of the 
expression 

£ X C , A = / d3r n(r) e X C ,A(r), (4) 

where 

roo r 
Ε χ ο , λ ( Γ ) = J du 2πυ, J ΠΧΟ,Α(Γ, r + u ) . (5) 

(Exc is related to EXCt\ by Exc = f0
l d\Exc,\.) In the local spin-density approxi

mation the energy per particle e X C >A(r) of an arbitrary inhomogeneous system is 
approximated by that of a homogeneous electron gas wi th spin density n a ( r ) , i.e., 
^xc ( r ) = e x^ i f(n|(r),n|(r)). The error in Exc resulting from this approximation 
is typically about 10%. The energy per particle close to a nucleus is usually over
estimated, and that in the ta i l region of the electron density is underestimated 
[29]. However, the region close to the nuclei has a small volume and the contribu
tion from the ta i l region is very small , since the energy per particle gets weighted 
by the electron density in E q . 4. In the valence region of atoms and molecules, 
€ χ ο * ' ( η ΐ ( Γ ) > η ΐ ( Γ ) ) shows a semiquantitative agreement wi th the exact energy per 
particle. However, the PW91 energy density is not so useful for understanding 
how the P W 9 1 functional works [30], since the energy density ηεζ^χ1 has been 
simplified by an integration by parts, which leaves Exc unchanged but leads to an 
ill-defined n ( r ) e ^ ( r ) . 

R e a l - s p a c e d e c o m p o s i t i o n o f E X C ) A « The real-space decomposition of the 
Exc,\, which is defined by 

roo 
Exc,\ = Ν / du 2KU (nXCtx(u)) 

Jo 
(6) 
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where the system- and spherically averaged hole is 

(nxcAu)) = J ^ J d3r n(r) n x c , A ( r , r + u), 

(?) 

offers the most detailed insight into the L S D and PW91 functionals. In fact 
the P W 9 1 exchange-correlation functional is based on a model for the system-
averaged exchange-correlation hole / d3r n(r) n X C ,A ( r , r + u)/N. Detailed studies 
[31] of (nX C,A(w)) have shown that even the L S D approximation to this quantity 
is remarkably accurate. Many exact conditions on the exact (nxc,x(u)), such as 
the normalization condition /0°° du 4TU2 (nXCf\(u)) = —1, are satisfied by L S D , 
since the L S D exchange-correlation hole is the hole of a possible physical system. 
The normalization condition on the hole together with the on-top (u = 0) value 
for n X C ,A ( r , r + u) set the scale for the exchange-correlation hole and therefore the 
scale for (nXCi\(u)) and EXCi\. Thus the on-top value of n X C ,A ( r , r + u) plays a cru
cial role in density functional theory. Investigations [32] on a number of systems 
show that the on-top value of the hole as a function of the local density is almost 
universal among Coulomb systems. Thus the L S D approximation to this quantity 
is very accurate, especially in the valence and tai l regions of the electron density 
[32]. As a consequence, any approximate density functional should reproduce the 
correct L S D on-top value of the exchange-correlation hole in the l imit of slowly 
varying electron densities. The PW91 functional has the L S D on-top value built 
in . It is based on a systematic expansion of the exchange-correlation hole in terms 
of the local density and the gradient of the local density. This gradient expansion 
approximation ( G E A ) to second order in V n improves the description of the hole 
at intermediate u values, but its spurious large-u behavior [33] violates a number 
of important constraints on the exact hole, such as the normalization condition. 
B y restoring these conditions v ia the real-space cutoff procedure [8], we obtain the 
P W 9 1 model for the exchange-correlation hole. Since the r integration in E q . 7 
involves an integration by parts which changes the local hole rcXC,A(r> r + u), only 
the system-averaged hole is a well-defined quantity in the P W 9 1 construction. 
Detailed studies [29,31] of the spherical- and system-averaged hole for molecules 
and atoms show that the PW91 approximation to this quantity significantly i m 
proves the L S D model. Other popular G G A ' s [5,6] do not provide models of the 
exchange-correlation hole and thus do not allow a detailed analysis of correlation 
effects on molecular bond formation. 

S p i n d e c o m p o s i t i o n of E X C , A - Another decomposition of the exchange-
correlation hole and therefore of the exchange-correlation energy distinguishes 
between electrons with parallel and anti-parallel spins: 

EXc,x = Ellx + E ^ + Ellx, (8) 

where 
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The Paul i principle prevents two parallel-spin electrons from coming close to each 
other, i.e., P ( r a , τσ) = 0. Electron-electron repulsion cannot deepen the cor
responding hole at u = 0, so the spatial extent of the hole is not significantly 
reduced. Note that the deeper the hole at u = 0, the shorter-ranged it must 
be to satisfy the normalization condition. O n the other hand, the on-top value 
of the exchange-correlation hole for two electrons with antiparallel-spin orienta
tion is significantly lowered by electron-electron repulsion, and the normalization 
therefore assures that the spatial extent of the hole gets reduced by correlation. 
Local and semilocal approximations work best if the exchange-correlation hole is 
confined to a small region of space around the reference electron. In this case 
the information about the local density and the gradient of the density is suffi
cient to capture the important features of the exchange-correlation hole. Thus it 
is not surprising that local and semilocal functionals work better for the corre
lation energy between antiparallel-spin electron than they do for the correlation 
energy between parallel-spin electrons [29]. However, attempts to construct a hy
brid scheme which uses a G G A for antiparallel-spin correlation and wave function 
methods for parallel-spin correlation are of l imited use [29], since the correlation 
effects between parallel-spin electrons are as difficult to describe within a finite 
basis set approach as are correlation effects between antiparallel-spin electrons. 

F ina l ly we note that the approximate G G A for antiparallel-spin [34] predicts 
E^ + E^ to be 20% of the total correlation energy of ATe, in good agreement with 
sophisticated wave function calculations which give a value [29] of 24%. 

C o u p l i n g - c o n s t a n t d e c o m p o s i t i o n o f E x c . The kinetic correlation energy 
contribution Tc to the total energy need not be explicit ly approximated as a 
functional of the electron density. Tc is impl ic i t ly accounted for in Exc of E q . 1 
v ia the coupling-constant integration over the λ-dependent exchange-correlation 
hole [35]. This coupling-constant integration leads to another decomposition of 
the exchange-correlation energy: 

Exc = dX £ X C , A , (10) 
Jo 

where ^ 
Exc,x = Jq du 2τπζ J J d3r n(r) η Χ Α , Λ (Γ, r + u) . (11) 

This decomposition has become a popular tool in density functional theory [36-38]. 
For λ = 0, the electrons are not Coulomb-correlated, so Exc,\=o = Ex accounts 
for the self-interaction correction and for the Paul i exclusion principle. Compared 
to the hole at finite values of λ, the hole at λ = 0 is shallower and therefore more 
long-ranged. A t ful l coupling-strength (λ = 1), EXCf\-i = Exc — Tc. Electrons 
close to the reference electron get pushed away at small u-values and pile up at 
large u-values, making the hole deeper at u = 0 and more short-ranged. Local 
and semilocal approximations usually work best for small u. Thus they are least 
suitable for λ = 0 (the exchange-only l imi t ) . These expectations about the range 
of the hole are confirmed by a study [31] of the λ-dependent exchange-correlation 
hole, and are probably true for al l systems. 
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The popular hybrid schemes [36-38] can be viewed as attempts to exploit this 
observation. We consider only hybrid schemes which recover the slowly-varying 
electron gas l imi t . In such a scheme, the coupling-constant integral is replaced by 
the weighted sum of the integrands at the endpoints of the coupling-constant inte
gration and the density functional approximation to the exchange energy Exc,x=o 
is replaced by the Hartree-Fock exchange energy [29,38]. In formulas, 

£xc = aE»F + (1 - a)EGGA + EGGA. (12) 

The parameter a is usually adjusted to minimize the root-mean-square errors of 
various molecular properties. However, it has been demonstrated [32,29] that the 
parameter a is far from universal for molecular systems. This can be seen by 
considering the stretched H2 molecule: The restricted Hartree-Fock hole is always 
distributed equally over both / / -atoms, whereas the exact hole and its G G A model 
are localized on the H atom at which the reference electron is located. Thus no 
finite amount of exact exchange should contribute to Exc in the l imit of infinite 
stretching. 

E x c h a n g e - c o r r e l a t i o n p o t e n t i a l . It has been shown [39,40] that the 
PW91 approximation to the exchange-correlation potential vxc = SExc[n]/6n , 
which appears in the Kohn-Sham Hamiltonian, deviates considerably from the 
exact potential, especially in the core and tai l regions of atoms. However, we 
have argued that approximate local and semilocal density functionals give good 
approximations only to system-averaged quantities such as the system-averaged 
exchange-correlation hole. It is therefore more appropriate to study quantities 
which involve system-averages of the exchange-correlation potential vxc and its 
components vx and v c , rather than the potential itself. The v i r ia l theorem shows 
that [41] 

Ex = - Jd3rn(r)vVvx(r) (13) 

and 

E c + Tc = - j d3r n(r) r · V u c ( r ) . (14) 

In this system average, the region close to the nuclei and the ta i l region of the 
electron density, where vxc is not well approximated by P W 9 1 , get l itt le weight. 
Due to error cancellation within the integral of Eqs. 14, the system-averaged 
quantities are far better approximated by PW91 than by L S D [31]. 

E x c h a n g e - c o r r e l a t i o n energ ies f r o m exac t d e n s i t i e s . A n approach which 
makes use of the improvement in accuracy of the L S D and G G A approximations 
at ful l coupling strength (λ = 1) relative to the coupling-constant average can 
be formulated based on knowledge of the exact density n(r) corresponding to a 
known external potential v(r) [42]. Several methods are known for calculating 
the exact Kohn-Sham potential vs(r) from a given electron density [43-47]. The 
exact exchange-correlation potential can then be obtained according to 

«xc(r) = « . ( r ) - v(r) - J dsr' (15) 
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The v i r ia l relations Eqs. 13 and 14 show that the v ir ia l of the exchange-correlation 
potential is given by the sum of Tc + Exc. Since EXCy\=\ = Exc — T c , we obtain 
the exact relation 

E x c = i [ £ x c , A = i - / d3r n(r) r · V t , x c ( r ) ] . (16) 

Exc,\=i on the right hand side of this equation wi l l now be replaced by its lo
cal or semilocal approximation, a replacement typically involving less error than 
the functional approximation of Exc. As shown in Table 1, the resulting expres
sions for Exc give a significant improvement compared to the local and semi-local 
approximations of Exc itself. 

Table 1: Exchange-correlation energies in Hartrees for several atoms [42] We com
pare exact values with those of L S D and P W 9 1 , and with improvements thereof 
(marked by a prime) using E q . (16). Unless otherwise indicated, the exact val
ues are from Ref. [48], while the approximate f u n c t i o n a l are evaluated on the 
Hartree-Fock densities of Ref. [49]. 

atom exact L S D L S D ' PW91 P W 9 1 ' 
H a -0.312 -0.290 -0.307 -0.314 -0.316 

H " a>6 -0.423 -0.409 -0.420 -0.425 -0.422 
He -1.068 -0.997 -1.048 -1.063 -1.066 
L i -1.827 -1.689 -1.786 -1.821 -1.829 

Be++ 6 -2.321 -2.107 -2.243 -2.298 -2.312 
Ne 8 + 6 -6.073 -5.376 -5.776 -5.989 -6.036 

Be -2.772 -2.536 -2.686 -2.739 -2.755 
B e a -2.772 -2.545 -2.691 -2.748 -2.760 
Ν -6.78 -6.32 -6.61 -6.77 -6.78 

N e c -12.48 -11.78 -12.20 -12.50 -12.47 

α A p p r o x i m a t e f u n c t i o n a l e v a l u a t e d o n exact 
dens i t ies . 

b E x a c t resu l ts f r o m Ref . [39]. 
c E x a c t resu l ts f r o m Ref . [43]. 

S t a t i c c o r r e l a t i o n i n d e n s i t y f u n c t i o n a l t h e o r y . In the context of den
sity functional theory, systems which show only dynamical correlation effects are 
called normal systems [50,51]. For small values of the coupling-constant λ, normal 
systems are well described by a single Slater determinant, and the on-top value 
of the hole is well reproduced by L S D and P W 9 1 . Systems with static correla
t ion, such as H2 stretched beyond the Coulson-Fisher point, are called abnormal 
systems. The exact wavefunction of stretched H2 (with bond length R —• 0 0 ) 
does not reduce to a single determinant as λ —• 0. Instead, it remains a Heitler-
London type wavefunction, keeping one electron localized on each atom. But in 
a restricted single-determinant approximation, the electrons cannot localize on 
individual atoms. As a consequence, the on-top value of the exchange-correlation 
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hole that results from a restricted calculation (Hartree-Fock, L S D , or G G A ) is 
quite incorrect. To see this, note first that for a single Slater determinant, the 
on-top pair density is simply P ( r , r) = 2nj(r)ra | (r). In a restricted calculation, in 
which n T ( r ) = n x ( r ) = n ( r ) /2 , we find ΡΑ=Ι(Γ,Γ) = P j ^ / ( n ( r ) / 2 , n ( r ) /2 ; u = 0), 
instead of the correct result, ΡΑ=Ι(Γ, r) = 0 for al l r. A cure for this problem is 
provided by an alternative interpretation of spin-density functional theory [50,51]. 
In this alternative interpretation, the quantities predicted are not the individual 
spin-densities n j ( r ) and nj ( r ) , but the total density n(r) = n j + rij and the full 
coupling strength on-top pair density ΡΑ=Ι(Γ, r) = Ρχ^ί{η],nj;u = 0). In ab
normal systems, the spin symmetry can then be broken with impunity. In the 
stretched Hi molecule, an electron with up-spin localizes on one hydrogen atom 
and an electron with down-spin localizes on the other. The spin-density in such an 
unrestricted calculation is obviously no longer accurately reproduced, but the total 
density is. Furthermore, ΡΑ=Ι(Γ, r) = ΡΑ=Ο(Γ, Γ) correctly vanishes for al l values of 
r, since either nj ( r ) or nj ( r ) is zero everywhere. This behavior of the on-top value 
of the pair density ensures that the unrestricted Kohn-Sham calculation gives an 
accurate dissociation energy. 
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freezing theory, 316-318 
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decay of solvation force for confined 
fluids, 182-183 

density-functional treatment of planar 
liquid-vapor interface, 178-181 

description, 166-167 
implications for wetting and layering 

transitions, 181-182 
Density, definition, 71-73 
Density functional(s) 

classifications, 105-106 
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intensities, 106 
for polymers at surfaces 

applications, 272 
binary melt near surface, 267-272 
derivation of ideal density functions, 

263-267 
field-density relationship, 262-263 
interaction term approximation, 262 

use in quantum chemistry, 453-454 
Density-functional calculations of 

radicals and diradicals 
experimental description, 403 
methodology 

electron spin resonance hyperfine 
coupling constant prediction, 404 

optimization and calculation procedure, 406 
spin annihilation of wave functions, 

404-^05 
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Density-functional calculations of 
radicals and diradicals—Continued 

phosphorus-containing radicals, 
406-411,417 

singlet-triplet gap in carbenes and 
nitrenium ions, 411-415,417-418 

spin annihilation of Kohn-Sham 
orbital-based Slater determinants, 
4 1 5 ^ 1 8 

Density-functional comparison using 
vibrational absorption and circular 
dichroism spectroscopy 

accuracy, 110,112 
calculated absorption spectra, 

107-108,110,1 H i 
calculated circular dichroism spectra, 

107,109-110,1 H i 
experimental methods, 106-107 
unpolarized absorption spectra, 

107-108,110 
unpolarized circular dichroism spectra, 

107,109-110 
Density-functional freezing theory 

application to Lennard-Jones fluid, 286 
concept, 286 
quantum effects, 286-287 

Density-functional-local density 
approximation method 

advantages, 389 
applications, 388 

Density-functional methods 
applications to inhomogeneous classical 

fluids, 198 
decay of correlations in bulk fluids and 

at interfaces, 166-183 
electronic property calculation for 

polymeric materials, 115-129 
electronic structure calculation, 1-163 
inhomogeneous polymeric systems 

grand potential functional 
determination, 246-247 

structural consequences, 247-248 
metal cluster studies, 435-436 
molecular and materials design 

advantages, 432-433 
applications, 433 

Density-functional methods—Continued 
molecular and materials design— 

Continued 
binding of ammonia to C u O ( l 11) 

surface, 429,430/,433 
chemisorption of silane on Si(001)2x1 

surface, 427-429,432 
fundamental quantities, 426-427 
L a N i 5 structure, 429,431-433 
requirements, 424 
theory, 424-427 

solid-fluid interfacial properties 
interfacial orientation, adhesive 

spheres, 242-243 
model systems 

adhesive spheres 
attractive strength, 239 
bulk properties, 238/,239 
interfacial properties, 239-240 
Lennard-Jones fluid 

attractive strength, 240 
interfacial properties, 241 
theory, 240-241 

hard spheres, 237 
influencing factors, 236-237 

theory 
bulk properties, 233-235 
description, 230-231 
interfacial properties, 234/,235-236 
modified weighted density 

approximation, 232 
planar weighted density approximation, 

232-233 
weighted density approximation, 

231-232 
statistical methods, 166-323 
structures and interaction energetics of 

mixed dimers, 131-139 
systems treated, 114 

Density-functional modeling, rotational 
isomeric state chains, 246-258 

Density-functional theory 
accuracy problems, 343 
advances, 342 
advantages, 70,131-132,342-343,403-404 
applications, 154,311-312 
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Density-functional theory—Continued 
beryllium metal fragments of 81, 87, and 

93 atoms 
accuracy, 451 
atomic charge, 439-443 
binding energy, 438^39 ,440 / 
calculation procedure, 436/437-438 
charge density, 441,444-451 
ionization potential, 439,441/ 

confined fluids of asymmetric molecules, 
See Geometrically based density-
functional theory for confined fluids 
of asymmetric molecules 

correlation energy, 42 
dense systems, separate important 

thermodynamic potentials into ideal 
and nonideal contributions, 261 

density profile calculation, 275 
description, 277-278 
development, 131 
freezing 

adhesive hard spheres, 301-302 
hard spheres, 299-300 
helium, 292-295 
soft interactions, 300-301 
theory, 298-299 

from Planck's constant = 0 to 1 
classical statistical mechanics application 

freezing of hard spheres, 318-322 
freezing theory, 316-318 

nonlocal functionals, 322-323 
quantum-classical connections, 312-313 

functional selection, 105 
Hohenberg-Kohn theorems, 1-2 
industrial applications 

applied environment, 14 
molecular orbital theory, 12-13 
organic molecule structures, heats of 

reactions, and U V - v i s i b l e 
absorption spectra trends, 13-14 

other applications, 14 
pharmaceutical industry, 12 

many electron systems 
basic motion 

Hartree-Fock-Slater method, 3 
Thomas-Fermi method, 2-3 

future outlook, 6-7 

Density-functional theory—Continued 
many electron systems—Continued 

Kohn-Sham equation, 3-4 
practical implementations, 4-6 

N M R parameter calculation, 328-340 
nonuniform phases, theory of freezing, 297 
nonuniform polyatomic fluids, 212-227 
overbinding tendency, 343,344i 
quantum freezing, 287-291 
spin contamination, 403 
statistical mechanisms 

applications 
construction of theories, 10-11 
solid-l iquid coexistence 

determination, 9 
concept, 7 
fundamental theory, 7-9 
future outlook, 11 

See also Yang's divide-and-conquer 
density-functional theory approach 

Density-functional theory correlation energy 
basic formalism, 43-47 
from approximations, 48-52 

Density-potential hybrid, expanded density 
functionals, 194-196 

Density profile of nonuniform fluids, 
calculation, 274-275 

Dimers of N H 3 , H 2 0 , and H F by 
Hartree-Fock, M0ller-Plesset, and 
density-functional methodologies 

charge transfer, 137-139 
computational procedure, 132-133 
dipole moments, 137-139 
geometries, 133-137 
interaction energetics, 137-139 

6,8-Dioxabicyclo[3.2.1 ]octane, 
local, nonlocal, and hybrid density 
functional comparison, 105-112 

Diradicals, density-fiinctional 
calculations, 402-418 

Direct ab initio dynamic methods for 
thermal rate calculation for 
polyatomic reactions 

accuracy, 87-88 
advantages, 86 
applications 

hydrogen abstraction reaction, 93-97 
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Direct ab initio dynamic methods for 
thermal rate calculation for 
polyatomic reactions—Continued 

applications—Continued 
proton transfer in formamidine-water 

complex, 98-101 
comparison to variational transition 

state theory and neglect of diatomic 
differential overlap Hamiltonian, 86-87 

density-functional theory methods for 
calculation of geometries and 
Hessians, 92-93 

development challenges, 85-86 
focusing techniques for Hessian 

calculation, 92 
theory 

multidimensional semiclassical 
tunneling methods, 89-92 

variational transition-state theory, 88-89 
Divide-and-conquer density-functional 

theory approach, See Yang's divide-and 
conquer density-functional theory 
approach 

Doped chains, electronic property 
calculation, 127-129 

Dummy particles, perturbation 
of atoms, 148 

Dynamic methods for thermal rate 
calculation for polyatomic reactions, 
See Direct ab initio dynamic methods 
for thermal rate calculation for 
polyatomic reactions 

Effective one-electron potential in 
Kohn-Sham molecular orbital theory 

advantages, 39-40 
analysis, 25-29 
direct modeling as density functionals, 

2 1 - 22 
exact and generalized gradient 

approximation potentials in atoms, 
2 2 - 25 

exchange-only theory 
comparison to generalized gradient 

approximation potentials, 36-39 

469 

Effective one-electron potential in K o h n -
Sham molecular orbital theory— 
Continued 

exchange-only theory—Continued 
response potential, 32,34-36 
screening potential, 31-33 

physical interpretation 
coupling constant integrated hole, 29 
screening potential, 29-31 

requirements, 21 
Electronic density, 74-75 
Electronic energy, 71-72 
Electronic property calculation 

of polymeric materials 
applications 

bismuth chains, 126-127 
( C 2 H 2 C l 2 ) x polymers, 124-136 
doped chains, 127-129 
hydrogen fluoride, 123-124 
irajw-polyacetylene, 119-121 
polybutadiene, 124,125/ 
polythiophene, 121-123 
sulfur helixes, 118-1191 

helical polymers 
coordinate systems, 115-116 
example, 115,116/ 
linearized muffin-tin orbitals, 116-118 

Electronic structure application 
Kohn-Sham theory, 315 
zeolites, 314/315-316 

Electronic structure calculation, density-
functional methods, 1-163 

Electronic structure density-functional 
theory 

basic motion 
Hartree-Fock-Slater method, 3 
Thomas-Fermi method, 2-3 

further applications and theoretical 
development, 328^451 

Kohn-Sham equation, 3-4 
practical implementations, 4-6 

Empirical expanded fundamentals, 
expanded density functionals, 190-192 

Energy functional, 390 
Exact approximation potentials in atoms, 

comparison to generalized gradient 
approximation potentials in atoms, 21-26 
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470 C H E M I C A L APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Exact total energy, 25-28 
Exchange correlation energy 

coupling constant decomposition, 457-458 
definition, 28-29,44,454-455 
determination from exact densities, 

4 5 8 ^ 5 9 
exchange correlation potential, 458-459 
exchange density decomposition, 455 
real space decomposition, 455-456 
spin decomposition, 456-457 
static correlation effect, 459-460 

Exchange correlation functional 
description, 332-333 
frozen core approximation, 333-334 
transition metal complexes, 334-336 

Exchange correlation potential, 458-459 
Exchange density decomposition, exchange 

correlation energy, 455 
Exchange-only density-functional theory 

local potential, 31,33/ 
response potential, 32,34 
screening potential, 31-33 

Exchange-only functional, 45 
Expanded density functionals 

density-potential hybrid, 194-196 
empirical expanded fundamentals, 

190-192 
nearest-neighbor interaction in one 

dimension, 188-190 
prototype, 186-188 
separation of scales, 193-194 
theory, 188 

F 

Fast density-functional method for 
chemistry 

advantages, 399-400 
features, 399-400 
geometries for first row transition 

metal compounds, 394,397i 
large organometallic molecules, 

394,398-399 
limiting nature of density basis, 394 
structural parameters for small organic 

molecules, 394,395-396r 

Fast density-functional method for 
chemistry—Continued 

theory 
charge variable propagation, 393-394 
density basis function generation, 

391-392 
energy functional, 390 
geometry optimization, 393 
local density approximation, 390-391 
orbital basis, 392-393 
overall time-limiting feature, 393 

total energy improvement methods, 400 
validity, 400 

Fast_Structure, evaluation of copper 
corrosion mechanisms of 
organopolysulfides, 368-386 

FastStruct/SimAnn, See Fast density-
functional method for chemistry 

Fermi contact integral, 404 
Ferrocene, vibrational properties, 64-65 
Field-density relationship, density 

functionals for polymers as surfaces, 
262-263 

Fifty:fifty determinant, 405 
First row compounds, spin-spin coupling 

constants, 338-339 
First row transition metal compounds, 

analysis using fast density-functional 
method, 394,397i 

Fluid(s), colloidal simple, freezing, 297-308 
Fluid-so l id interfacial properties, 

density-functional method, 229-243 
Fluoromethanes, hybrid Hartree-Fock-

density-functional theory functionals, 
352-354 

Fluxional dynamics of organometallics, 
beryllocene, 65-67 

F O O F , application of density-functional 
methods, 343 

F o r - G l y - G l y - G l y - N H E tetrapeptide 
ball and stick structure, 78,79/ 
Gaussian implementation of Yang's 

divide-and-conquer density-functional 
theory approach, approach, 82-83 

F o r - G l y - G l y - N H E tripeptide 
ball and stick structure, 78,79/ 
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INDEX 471 

F o r - G l y - G l y - N H E tripeptide—Continued 
Gaussian implementation of Yang's 

divide-and-conquer density-
functional theory approach, 81-82 

Formamidine-water complex, proton 
transfer, 98-101 

Fractional electron method, number of 
electrons, 143-146 

Free energy functional 
definition, 8-9 
molecular fluids, 204-206 

Free energy perturbation calculation 
within molecular mechanical force 

fields, 142 
within quantum mechanical molecular 

dynamics 
computational procedure, 148-150 
development, 142 
dual topology method, 142 
free energies, 150-152 
single topology method, 142 
theory 

atom identification, 146-148 
number of atom(s), 148 
number of atomic orbitals, 146 
number of electrons, 143-146 

Freezing 
colloidal simple fluids 

colloidal dispersions 
intermediate attractions, 302-303 
particle attraction by depletion 

mechanism, 302 
short-ranged attractions, 303-304 

density-functional theory of freezing 
adhesive hard spheres, 301-302 
hard spheres, 299-300 
soft interactions, 300-301 
theory, 298-299 

theoretical approaches 
general concepts, 304-305 
results 

intermediate attractions, 307-308 
long-ranged attractions, 307 
short-ranged attractions, 308 

simple model, 305-306 
van der Waals theory, 306-307 

Freezing—Continued 
helium, density-functional theory, 292-295 
simple fluids, density-functional theory 

from Planck's constant = 0 to 1, 
318-322 

Frozen core approximation, exchange-
correlation functional, 333-334 

Functional for monoatomic systems, 7 
Fundamental measure free energy 

functional, hard particles, 200-202 
Fundamental measure universal bridge 

functional, confined fluids of 
asymmetric molecules, 202-204 

Gauge including atomic orbital(s), 
calculation of N M R parameter 
calculation by density-functional 
theory, 328-340 

Gauge including atomic orbital-density-
functional theory methods, shielding 
tensor calculation, 329-331 

Gauss-Bonnet theorem for convex bodies, 
free energy functional for molecular 
fluids, 204-206 

Gaussian implementation of Yang's 
divide-and-conquer density-functional 
theory approach 

accuracy, 71 
computational advantages, 75-76 
conventional Gaussian density-functional 

approach, 72-73 
density, 74-75 
description, 70 
extended buffer space, 77-78 
Gaussian implementation, 76-77 
Kohn-Sham equations, 71-72 
protocol establishment, 78-83 
theory, 73-76 
total energy, 75 

Generalized effective liquid 
approximation, 10 

Generalized gradient approximation(s) 
accuracy, 454 
advantages, 20-21,454 
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4 7 2 C H E M I C A L APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Generalized gradient approximation(s)— 
Continued 

comparison to local spin density 
approximation, 454-460 

theory, 4 2 5 ^ 2 6 
Generalized gradient approximation 

potentials 
comparison 

response potentials of optimized 
potential model orbitals, 36-39 

screening potentials of optimized 
potential model orbitals, 36,37/ 

in atoms, comparison to exact 
approximation potentials in atoms, 
22-26 

response, 36 
screening, 36 

Geometrically based density-functional 
theory for confined fluids of 
asymmetric molecules 

aligned hard body fluid, 207 
development, 198-199 
expectations, 206 
free energy functional for molecular 

fluids, 204-206 
fundamental measure free energy 

functional for hard particles, 
200-202 

fundamental measure universal bridge 
functional, 202-204 

hard body fluid of arbitrary 
orientations, 207-208 

interpolation using natural basis 
functions, 199-200 

isotropic hard body fluid, 206-207 
Grand potential, 2 
Grand potential functional, 246-247 
Green's function, 32 

H 

H 2 0 dimers, structures and interaction 
energies, 131-139 

Hard body fluids, geometrically based 
density-functional theory, 207-208 

Hard particles, 200-202 

Hard sphere(s) 
density-functional theory of freezing, 

299-300 
interfacial properties, 237 

Hard sphere system, use in evaluation 
of new density-functional theory 
approaches to freezing, 9-10 

Hartree-Fock-density-functional theory 
functionals, hybrid, See Hybrid 
Hartree-Fock-density-functional 
theory functionals 

Hartree-Fock methodology, structures and 
interaction energetics of mixed 
dimers, 131-139 

Hartree-Fock-Roothan method, metal 
cluster studies, 435-436 

Hartree-Fock-Roothan studies, 
comparison, 435-451 

Hartree-Fock-Slater method, 3 
Helical polymers 

electronic property calculation, 115-118 
example, 115,116/ 

Helium, freezing, 292-295 
H F dimers, structures and interaction 

energies, 131-139 
Hohenberg-Kohn theorems, 1-2,372-373 
Hohenberg-Kohn total energy 

functional, 43 
Hole density, 27 
Hybrid density functionals 

comparison to local and nonlocal density 
functionals, 106-112 

description, 106 
Hybrid Hartree-Fock-density-functional 

theory functionals 
advantages, 364 
disadvantage, 364 
fluoromethanes, 352-354 
hydrogen bonding, 355-358 
nitrogen oxides, 354-355 
O H + H 2 -> H 2 0 + H , 347,350-352 
validity, 358 

Hydrogen abstraction reaction, thermal 
rate calculation, 93-97 

Hydrogen bonding, hybrid Hartree-Fock-
density-functional theory functionals, 
355-358 
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INDEX 473 

Hydrogen fluoride, electronic property 
calculation, 123-124 

Ideal density functionals, derivation, 
263-267 

Ideal free energy functional, 261 
Inhomogeneous rotational isomeric-state 

polyethylene and alkane systems using 
density-functional theory 

accuracy, 255,257-258 
applications, 258 
freezing, 252-254 
near a hard wal l , 255,256/ 
selection of ideal systems, 247 
system model, 248-249 
theory, 249-252 

Integral equation theory, 279 
Interaction energies, dimers of N H 3 , H 2 0 , 

and H F by Hartree-Fock, M0ller-Plesset, 
and density-functional methodologies, 
131-139 

Interaction term, approximation, 262 
Interfaces, decay of correlations, 166-173 
Interfacial orientation, adhesive spheres, 

242-243 
Interfacial properties 

adhesive properties, 239-240 
density-functional method, 229-243 
Lennard-Jones fluid, 241 
theory, 234/235-236 

Intermediate attractions 
colloidal dispersions, 302-303 
freezing of colloidal simple fluids, 

307-308 
Ionization potential, beryllium metal 

fragments, 439,441/ 
Isotopic substitution, role in surface 

segregation for nonuniform polyatomic 
fluids, 212-227 

Isotropic hard body fluid, geometrically 
based density-functional theory, 206-207 

Isotropic hyperfine coupling to 
nucleus X , 404 

Isotropic polystyrene blends, density-
functional theory, 212-227 

Κ 

Kinetic energy functional of non-
interacting particles, 44 

Kinetic energy of noninteracting 
electrons, 71 

Kohn-Sham equation, 3-4,71-72,426 
Kohn-Sham molecular orbital(s), 

determination, 71 
Kohn-Sham molecular orbital theory, 

effective one-electron potential, 20-40 
Kohn-Sham one-electron model, 

advantages, 20-21 
Kohn-Sham orbital-based Slater 

determinants, spin annihilation, 415-418 
Kohn-Sham theory, electronic structure 

application, 315 

L 

Layering transitions, decay of correlations 
in bulk fluids and at interfaces, 181-182 

Lennard-Jones fluid 
application of density-functional 

freezing theory, 286 
attractive strength, 240 
interfacial properties, 241 
theory, 240-241 

Lennard-Jones potential, function, 297 
Light hydrocarbons, spin-spin coupling 

constants, 338,339* 
Linearized muffin-tin orbital(s), helical 

polymers, 116-118 
Linearized muffin-tin orbital methods, 

basis set size, 58 
Local density approximation 

comparison to generalized gradient 
approximation, 454-460 

disadvantage, 454 
information obtained, 212 
theory, 4 2 5 ^ 2 6 

Local spin density approximation 
functional 

comparison to B L Y P and B e c k e 3 L Y P 
functionals, 106-112 

description, 106 
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474 C H E M I C A L APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Local density functionals 
comparison to nonlocal and hybrid density 

functionals, 106-107 
description, 105 

Long-ranged attractions, freezing 
of colloidal simple fluids, 307 

M 

Main group compounds, spin-spin coupling 
constant calculation, 337-340 

Materials design, density-functional 
methods, 4 2 3 ^ 3 3 

Melts, polymer, weighted density 
approximation, 274-284 

Metal clusters, structure and dynamics 
characterization, 435 

Modified weighted density approximation, 
theory, 232 

Molecular design, density-functional 
methods, 423^133 

Molecular energies, analytical second 
derivatives, 154-163 

Molecular fluids, free energy functional, 
204-206 

Molecular ground-state properties, role 
of ab initio molecular dynamics, 62-64 

Molecular orbital theory of Kohn-Sham, 
effective one-electron potential, 20-40 

Molecules and materials with novel 
functional properties, research and 
development strategies, 423^424 

M0ller-Plesset methodology, structures 
and interaction energetics of mixed 
dimers, 131-139 

Muffin-tin orbitals, polymers, 114-129 
Multiplicative parameters, 

determination, 392 

Ν 

η-body direct correlation functions, 8 
Natural bond orbital analysis, 133 
Nearest-neighbor interaction in one 

dimension, expanded density 
functionals, 188-190 

Neglect of diatomic differential overlap 
Hamiltonian, applications, 86 

N H 3 dimers, structures and interaction 
energies, 131-139 

Nitrenium ions, singlet-triplet gaps, 
411^15,417^118 

Nitrogen oxides, hybrid Hartree-Fock-
density-functional theory functionals, 
354-355 

N M R 
applications, 328 
first principle methods for parameter 

calculation, 328 
N M R parameter calculation by density-

functional theory 
shielding tensor calculation 

computational procedures, 331 
gauge including atomic orbital-density-

functional theory method 
shielding anisotropics for simple 

molecules, 332 
shielding constants for simple 

molecules, 331-332 
theory, 329-331 

outlook, 336 
spin-spin coupling constant calculation 

main group compounds, 337-340 
theory of nuclear spin-spin coupling, 

336-337 
transition metal carbonyls, 339-340 

Nonlocal density functionals 
comparison to local and hybrid density 

functionals, 106-112 
density-functional theory from Planck's 

constant = 0 to 1, 322-323 
Nonuniform polyatomic fluids, density-

functional theory, 212-227 
Normal systems, 459 
Nuclear displacements, density-functional 

implementation of perturbations, 
154-163 

Nuclear spin-spin coupling, theory, 
336-337 

Number of atom(s), perturbation, 148 
Number of atomic orbitals, 

perturbation, 146 
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INDEX 475 

Number of electrons, perturbations, 
143-146 

Ο 

O H + H 2 -> H 2 0 + H , hybrid Hartree-
Fock-density-functional theory 
functionals, 347,350-352 

One-electron potential in Kohn-Sham 
molecular orbital theory, effective, 
See Effective one-electron potential in 
Kohn-Sham molecular orbital theory 

One-particle Schrôdinger equation 
description, 426 
solution, 392 

Open-shell molecules, challenges for 
electronic structure methods, 402-404 

Optimized potential model, See 
Exchange-only density-functional theory 

Organic molecules, analysis using fast 
density-functional method, 394,395-396* 

Organometallics 
analysis using fast density-functional 

method, 394,398-399 
fluxional dynamics, 65-67 

Organopolysulfide(s), copper corrosion 
mechanisms, 368-386 

Organopolysulfide lubricant additives, 
disadvantages, 368 

Ρ 

Pair distribution, approximations, 185-186 
Parrinello, ab initio molecular dynamics 

method, 54 
Perturbation density-functional theory for 

nonuniform polyatomic fluids 
applications, 226-227 
perturbation density-functional theory, 

213-227 
reversal of isotopic effect vs. degree 

of polymerization, 225-226 
segment size disparity vs. surface 

segregation, 221,222/ 
side branching vs. surface segregation, 

217,220/ 

Perturbation density-functional theory for 
nonuniform polyatomic fluids— 
Continued 

surface tension 
vs. molecular weight, 217,219/221,224/ 
vs. temperature and chain length, 

217,218/221,223/ 
theoretical development, 213 
volume fraction vs. degree of 

polymerization, 221,225 
Phosphorus-containing radicals, density-

functional calculations, 406-411,417 
Planar liquid-vapor interface, density-

functional treatment, 178-181 
Planar weighted density approximation, 

theory, 232-233 
P M 3 approximations, derivation, 146-148 
frans-Polyacetylene, electronic 

property calculation, 119-121 
Polyatomic fluids, nonuniform, density-

functional theory, 212-227 
Polyatomic reactions, direct ab initio 

dynamic methods for thermal rate 
calculation, 85-101 

Polybutadiene, electronic property 
calculation, 124,125/ 

Poly(dimethylsiloxane), density-functional 
theory, 212-227 

Polyethylene, freezing, 246 
Polyethylene systems, freezing, 246-258 
Polymer(s) 

at surfaces, density functionals, 261-272 
electronic property calculations, 114-129 

Polymer melt(s), weighted density 
approximation, 274-284 

Polymer melt processing, importance 
of polymer molecule behavior near 
surface, 274 

Polymer reference interaction site model 
liquid-state theory, 248-249 

Polysulfides, role of chain length on 
corrosive behavior, 368 

Polythiophene, electronic property 
calculation, 121-123 

Potential of mean force calculation within 
molecular mechanical force fields, 142 
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476 C H E M I C A L APPLICATIONS OF DENSITY-FUNCTIONAL THEORY 

Projector augmented wave method 
ab initio molecular dynamics, 54-67 
advantages, 54,58-59 
all-electron valence wave function, 59-60 
applications, 54 
augmentation region, 59 
basis set size, 58-59 
comparison to pseudopotential method, 61 
design goal, 59 
frozen core approximation, 60-61 

Proton transfer in formamidine-water 
complex, thermal rate calculation, 
98-101 

Pure fluid, asymptotics of bulk pair 
correlations function, 167-172 

Q 

Quantum chemical correlation energy 
basic formalism, 43-47 
comparison to density-functional theory 

correlation energy, 46-47 
Quantum chemistry 

correlation energy, 42 
goal, 453 
methods, 453^154 
role of density functionals, 453-454 

Quantum-classical connections, density-
functional theory from Planck's 
constant = 0 to 1, 312-313 

Quantum density-functional theory of 
freezing, derivation of quantum 
freezing functional, 287-291 

Quantum freezing, density-functional 
theory, 287-291 

Quantum mechanical molecular dynamics 
description, 142-143 
free energy perturbation calculations, 

142-152 

R 

Radicals, density-functional calculations, 
402^118 

Real space decomposition, exchange 
correlation energy, 455-456 

Response potential, exchange-only theory, 
32,34-36 

Restricted open-shell Hartree-Fock method, 
advantages and disadvantages, 402-403 

Rotational isomeric-state chains, density-
functional modeling, 248-258 

Scaling of Fock matrix elements, 
perturbation of number of atomic 
orbitals, 146 

Screening potential 
description, 29-31 
exchange-only theory, 31-33 

Second-row hydrides, spin-spin coupling 
constants, 338 

Segment size, role in surface segregation 
for nonuniform polyatomic fluids, 
212-227 

Semiempirical methods, disadvantages, 13 
Separation of scales, expanded density 

functionals, 193-194 
Short-ranged attractions 

colloidal dispersions, 303-304 
freezing of colloidal simple fluids, 308 

Si(001)2x1 surface, chemisorption of 
silane, 427^29,432 

Side branching, role in surface 
segregation for nonuniform polyatomic 
fluids, 212-227 

Silane, chemisorption to Si(001)2x1 
surface, 427-429,432 

Simple fluid(s) 
colloidal, freezing, 297-308 
optimized free energy functional, 202-204 

Simple fluid adsorbed at solid substrate 
or wal l , density profile, 166 

Simple molecules, shielding tensor 
calculation, 331-332 

Slater potential, 31 
Soft interactions, density-functional 

theory of freezing, 300-301 
Sol id- f luid interfacial properties, 

density-functional method, 229-243 
study problems, 229-230 
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INDEX 477 

Spin-annihilated energy, calculation, 405 
Spin annihilation, radicals and 

diradicals, 402-418 
Spin contamination, 403 
Spin decomposition, exchange correlation 

energy, 456-457 
Spin-spin coupling constants, calculation, 

336-340 
Static correlation in density-functional 

theory, 459-460 
Statistical mechanisms, density-functional 

theory, 7-11,166-323 
Structures, dimers of N H 3 , H 2 0 , and H F by 

Hartree-Fock, M0ller-Plesset, and 
density-functional methodologies, 
131-139 

Sulfur helixes, electronic property 
calculation, 118-119 

Surface(s), density functionals for 
polymers, 261-272 

Surface segregation effects, nonuniform 
polyatomic fluids, 212-227 

Τ 

Ten-electron hydrides, spin-spin coupling 
constants, 337-338 

Thermal rates of polyatomic reactions, 
direct ab initio dynamic methods, 85-101 

Thermodynamic perturbation theory, 
nonuniform fluids, 212-227 

Thomas-Fermi method, 2-3 
Total electron density, 426 
Total energy, 75,425 
Total energy functional, 43-44 
Total ground-state energy, 1-2 
Total pair correlations functions for 

binary fluid mixture, asymptotics, 
174-175,176/ 

Transition metal carbonyls, spin-spin 
coupling constant calculation, 339-340 

Transition metal complexes, exchange 
correlation functional, 332-333 

Transition metal compounds 
analysis using fast density-functional 

method, 394,397r 
structural determination methods, 388 

Tridecane, structure, 246-258 
Truncated functional expansion 

accuracy, 281,284 
description, 278-279 

U 

Unrestricted open-shell Hartree-Fock 
method, advantages and disadvantages, 
402-403 

V 

van der Waals theory, freezing of 
colloidal simple fluids, 306-307 

Variational transition-state theory, 
applications, 86 

Vibrational absorption, density-functional 
comparison, 105-112 

Vibrational intensities, evaluation of 
density functionals, 106 

Vibrational properties, ferrocene, 64-65 
Vibrationally adiabatic ground-state 

potential, 89 

W 

Wal l - f lu id interfacial profiles, 
asymptotics, 175,177-178 

Weighted density, 8 
Weighted density approximation, 

information obtained, 212 
for polymer melts 

accuracy, 281,284 
comparison to Monte Carlo simulations, 

280-281,282-283/ 
density-functional theory, 276-277 
density profile calculation, 274-275 
integral equation theory, 279 
molecular model, 275-276 
numerical procedure, 279-280 
other studies, 274 
theory, 277-278 
truncated functional expansion, 

278-279 
theory, 231-232 

Weiszacker kinetic energy, 30 
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